82 research outputs found

    Abiotic and Biotic Factors Influencing the Effect of Microplastic on Soil Aggregation

    Get PDF
    Plastic is an anthropogenic, ubiquitous and persistent contaminant accumulating in our environment. The consequences of the presence of plastics for soils, including soil biota and the processes they drive, are largely unknown. This is particularly true for microplastic. There is only little data available on the effect of microplastics on key soil processes, including soil aggregation. Here, we investigated the consequences of polyester microfiber contamination on soil aggregation of a sandy soil under laboratory conditions. We aimed to test if the microfiber effects on soil aggregation were predominantly physical or biological. We found that soil biota addition (compared to sterile soil) had a significant positive effect on both the formation and stabilization of soil aggregates, as expected, while wet-dry cycles solely affected aggregate formation. Polyester microfiber contamination did not affect the formation and stability of aggregates. But in the presence of soil biota, microfibers reduced soil aggregate stability. Our results show that polyester microfibers have the potential to alter soil structure, and that these effects are at least partially mediated by soil biota

    Classifying human influences on terrestrial ecosystems

    Get PDF
    Human activity is affecting every ecosystem on Earth, with terrestrial biodiversity decreasing rapidly. Human influences materialize in the form of numerous, jointly acting factors, yet the experimental study of such joint impacts is not well developed. We identify the absence of a systematic ordering system of factors according to their properties (traits) as an impediment to progress and offer an a priori trait-based factor classification to illustrate this point, starting at the coarsest level with the physical, biological or chemical nature of factors. Such factor classifications can serve in communication of science, but also can be used as heuristic tools to develop questions and formulate new hypotheses, or as predictors of effects, which we explore here. We hope that classifications such as the one proposed here can help shift the spotlight on the multitude of anthropogenic changes affecting ecosystems, and that such classifications can be used to help unravel joint impacts of a great number of factors

    Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi

    Get PDF
    Microplastics (MPs) are ubiquitously found in terrestrial ecosystems and are increasingly recognized as a factor of global change (GCF). Current research shows that MP can alter plant growth, soil inherent properties, and the composition and activity of microbial communities. However, knowledge about how microplastic affects arbuscular mycorrhizal fungi (AMF) is scarce. For plants it has been shown that microplastic can both increase and decrease the aboveground biomass and reduce the root diameter, which could indirectly cause a change in AMF abundance and activity. One of the main direct effects of microplastic is the reduction of the soil bulk density, which translates to an altered soil pore structure and water transport. Moreover, especially fibers can have considerable impacts on soil structure, namely the size distribution and stability of soil aggregates. Therefore, microplastic alters a number of soil parameters that determine habitat space and conditions for AMF. We expect that this will influence functions mediated by AMF, such as soil aggregation, water and nutrient transport. We discuss how the impacts of microplastic on AMF could alter how plants deal with other GCFs in the context of sustainable food production. The co-occurrence of several GCFs, e.g., elevated temperature, drought, pesticides, and microplastic could modify the impact of microplastic on AMF. Furthermore, the ubiquitous presence of microplastic also relates to earth system processes, e.g., net primary production (NPP), carbon and nitrogen cycling, which involve AMF as key soil organisms. For future research, we outline which experiments should be prioritized

    Fungal Traits Important for Soil Aggregation

    Get PDF
    Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits

    Arbuscular mycorrhizal fungi benefit plants in response to major global change factors

    Get PDF
    Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO2. We show that AMF significantly ameliorate the negative effects of drought on plant performance. The GCFs N addition and elevated CO2 significantly enhance the performance of AM plants but not of non-inoculated plants. AM plants show better performance than their non-inoculated counterparts under warming, although neither of them showed a significant response to this GCF. These results suggest that AMF benefit plants in response to GCFs. Our study highlights the importance of AMF in enhancing plant performance under ongoing global change

    Nitrogen increases soil organic carbon accrual and alters its functionality

    Get PDF
    Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations

    Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach

    Get PDF
    Microplastics are a diverse and ubiquitous contaminant, a global change driver with potential to alter ecosystem properties and processes. Microplastic-induced effects in soils are manifold as microplastics differ in a variety of properties among which the shape is of special interest. Our knowledge is limited regarding the impact of various microplastic shapes on soil processes. Therefore, we conducted this two-part research comprising a meta-analysis on published literature and a lab experiment focusing on microplastic shapes- and polymer-induced effects on soil aggregation and organic matter decomposition. We here focus on fibers, films, foams and particles as microplastic shapes. In the meta-analysis, we found a strong research focus on fibrous and particulate microplastic materials, with films and foams neglected. Our experiment showed that microplastic shapes are important modulators of responses in soil aggregation and organic matter decomposition. Fibers, irrespective of their chemistry, negatively affected the formation of aggregates. However, for other shapes like foams and particles, the polymer identity is an important factor co-modulating the soil responses. Further research is needed to generate a data-driven foundation to permit a better mechanistic understanding of the importance and consequences of microplastics added to soils

    Effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on soil structure and function

    Get PDF
    Soils are impacted globally by several anthropogenic factors, including chemical pollutants. Among those, perfluoroalkyl and polyfluoroalkyl substances (PFAS) are of concern due to their high environmental persistence, and as they might affect soil structure and function. However, data on impacts of PFAS on soil structure and microbially-driven processes are currently lacking. This study explored the effects of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonic acid (PFBS) at environmental-relevant concentrations on soil health, using a 6-week microcosm experiment. PFAS (even at 0.5 ng g−1 for PFBS) significantly increased litter decomposition, associated with positive effects on β-glucosidase activities. This effect increased with PFAS concentrations. Soil pH was significantly increased, likely as a direct consequence of increased litter decomposition affected by PFAS. Soil respiration was significantly inhibited by PFAS in week 3, while this effect was more variable in week 6. Water-stable aggregates were negatively affected by PFOS, possibly related to microbial shifts. PFAS affected soil bacterial and fungal abundance, but not microbial and certain enzyme activities. Our work highlights the potential effects of PFAS on soil health, and we argue that this substance class could be a factor of environmental change of potentially broad relevance in terrestrial ecosystem functioning

    Increasing Temperature and Microplastic Fibers Jointly Influence Soil Aggregation by Saprobic Fungi

    Get PDF
    Microplastic pollution and increasing temperature have potential to influence soil quality; yet little is known about their effects on soil aggregation, a key determinant of soil quality. Given the importance of fungi for soil aggregation, we investigated the impacts of increasing temperature and microplastic fibers on aggregation by carrying out a soil incubation experiment in which we inoculated soil individually with 5 specific strains of soil saprobic fungi. Our treatments were temperature (ambient temperature of 25°C or temperature increased by 3°C, abruptly versus gradually) and microplastic fibers (control and 0.4% w/w). We evaluated the percentage of water stable aggregates (WSA) and hydrolysis of fluorescein diacetate (FDA) as an indicator of fungal biomass. Microplastic fiber addition was the main factor influencing the WSA, decreasing the percentage of WSA except in soil incubated with strain RLCS 01, and mitigated the effects of temperature or even caused more pronounced decrease in WSA under increasing temperature. We also observed clear differences between temperature change patterns. Our study shows that the interactive effects of warming and microplastic fibers are important to consider when evaluating effects of global change on soil aggregation and potentially other soil processes

    Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent

    Get PDF
    Microplastic as an anthropogenic pollutant accumulates in terrestrial ecosystems over time, threatening soil quality and health, for example by decreasing aggregate stability. Organic matter addition is an efficient approach to promote aggregate stability, yet little is known about whether microplastic can reduce the beneficial effect of organic matter on aggregate stability. We investigated the impacts of microplastic fibers in the presence or absence of different organic materials by carrying out a soil incubation experiment. This experiment was set up as a fully factorial design containing all combinations of microplastic fibers (no microplastic fiber addition, two different types of polyester fibers, and polyacrylic) and organic matter (no organic matter addition, Medicago lupulina leaves, Plantago lanceolata leaves, wheat straw, and hemp stems). We evaluated the percentage of water-stable aggregates (WSA) and activities of four soil enzymes (β-glucosidase, β-D-celluliosidase, N-acetyl-b-glucosaminidase, phosphatase). Organic matter addition increased WSA and enzyme activities, as expected. In particular, Plantago or wheat straw addition increased WSA and enzyme activities by 224.77 or 281.65% and 298.51 or 55.45%, respectively. Microplastic fibers had no effect on WSA and enzyme activities in the soil without organic matter addition, but decreased WSA and enzyme activities by 26.20 or 37.57% and 23.85 or 26.11%, respectively, in the presence of Plantago or wheat straw. Our study shows that the effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. A possible reason is that Plantago and wheat straw addition stimulated soil aggregation to a greater degree, resulting in more newly formed aggregates containing microplastic, the incorporated microplastic fibers led to less stable aggregates, and decrease in enzyme activities This highlights an important aspect of the context dependency of microplastic effects in soil and on soil health. Our results also suggest risks for soil stability associated with organic matter additions, such as is common in agroecosystems, when microplastics are present
    corecore