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Human activity is affecting every ecosystem on Earth, with terres-
trial biodiversity decreasing rapidly (Diaz et al., 2019; Tilman et al., 
2017). A major amount of research in ecology is dedicated to un-
covering the effects of various anthropogenic influences on biota, 
communities and ecosystems to understand the mechanisms under-
pinning biodiversity decline and functional change (Sala et al., 2000; 
Vitousek, 1994).

The empirical arsenal of ecologists includes observational 
studies, where no intervention is applied to assess the influence 
of factors, and experiments, where factors are applied and re-
sponses observed using replication, controlling for other influences. 
Experiments are our best tools for demonstrating causality and as 
such they occupy a central role in the canon of approaches, includ-
ing when studying impacts of environmental drivers. While obser-
vational studies routinely include many explanatory variables, the 
number of factors applied in experiments is typically much more 
limited. For example, in a recent systematic mapping of the existing 
literature on global change and soil, over 98% of papers reported 

on experiments dealing with just one or two factors simultaneously 
(Rillig, Ryo, et al., 2019). This is a sobering result considering the mul-
tifactor nature of anthropogenic change: effects are due to a wide 
range of factors (Sage, 2020) and their effects on systems are often 
concurrent (Bowler et al., 2020; Crain et al., 2008; Gunderson et al., 
2016; Orr et al., 2020).

There are probably a number of reasons for this limitation in 
data on joint impacts of a large number of factors, chiefly among 
which the combinatorial explosion problem (Katzir et al., 2019; 
Lundstedt et al., 1998). Most experiments are factorial experiments 
(meaning that different levels of factors are combined, typically all 
levels of one factor with all levels of other factors, i.e. a complete 
factorial design). The combinatorial explosion problem means that it 
becomes increasingly difficult to factorially combine a larger num-
ber of factors, because combinations increase rapidly with factor 
number (e.g. for 10 factors it would be 210 combinations if there 
are just two levels of each factor). But another issue is research 
compartmentalization (Orr et al., 2020), that is research labs are 
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Abstract
Human activity is affecting every ecosystem on Earth, with terrestrial biodiversity 
decreasing rapidly. Human influences materialize in the form of numerous, jointly act-
ing factors, yet the experimental study of such joint impacts is not well developed. 
We identify the absence of a systematic ordering system of factors according to their 
properties (traits) as an impediment to progress and offer an a priori trait-based factor 
classification to illustrate this point, starting at the coarsest level with the physical, 
biological or chemical nature of factors. Such factor classifications can serve in com-
munication of science, but also can be used as heuristic tools to develop questions 
and formulate new hypotheses, or as predictors of effects, which we explore here. 
We hope that classifications such as the one proposed here can help shift the spot-
light on the multitude of anthropogenic changes affecting ecosystems, and that such 
classifications can be used to help unravel joint impacts of a great number of factors.
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increasingly specialized in dealing with just one or a few factors, 
because the literature output is enormous and because some fac-
tors present logistical challenges in terms of gearing up for experi-
mental study (e.g. gas exposure systems). This has led to the current 
situation where we know little about the joint impacts of multiple 
environmental factors, yet understanding the effects of multiple, 
concurrently acting factors on ecological systems is of paramount 
importance. This insight is not new (Paine et al., 1998); about two 
decades ago, Paine et al. concluded that multiple compounded per-
turbations ‘will be basic to environmental management decisions of 
the 21st century’.

We believe another reason for the lack of progress in studying 
joint impacts of multiple factors is not having an ordering system 
for such environmental factors. Such an ordering system could 
offer several advantages, which we describe below in greater de-
tail, including: (i) serving as a teaching and communication tool; (ii) 
informing about new factors of global change by systematically em-
bedding them among the known factors; (iii) defining what an indi-
vidual factor actually is; and (iv) helping with experimental design 
and in making predictions for experimental outcomes (similar factors 
might have similar effects). There currently are no ordering systems 
or classifications capturing the range of anthropogenic factors po-
tentially influencing terrestrial ecosystems. Coarse level categoriza-
tions recognize whether a factor is globally mixed or of local origin 
scaling up to a global issue (Sage, 2020), but most frequently, global 
environmental factors are listed without implying an underlying or-
dering system. Classifications based on relatedness of items have a 
long tradition in biology and other disciplines, and serve to organize 
knowledge and to offer opportunities for prediction; for example, a 
phylogeny of species can be used to predict traits (Aguilar-Trigueros 
et al., 2015; Goberna & Verdu, 2016). Classifications are available for 
certain groups of factors, especially chemical pollutants (Eisenberg 
& McKone, 1998; Verhaar et al., 2000), but not for a broader range 
of environmental drivers. We argue here that such a classification is 
an important ingredient to advancing the field.

1  |  AN A PRIORI TR AIT- BA SED FAC TOR 
CL A SSIFIC ATION

To illustrate the potential advantage of a factor classification, 
we here offer such an a priori trait-based factor classification for 
30 factors of human influence on terrestrial ecosystems and soils 
(Figure 1). We focus on plants and soil, as soils are particularly af-
fected by many human factors; with their high biodiversity density 
and key contributions to terrestrial ecosystem functioning, they are 
a high priority study subject (Rillig, Ryo, et al., 2019; Thakur et al., 
2020).

We classified these 30 factors on the very nature of the factors 
themselves, their basic modes of action and key properties (none of 
the traits were chosen with particular research questions in mind, 
aiming for broadest possible applicability of this classification in 
plant–soil systems). We first array the factors according to their 

physical, chemical or biological nature. Physical factors are further 
divided into particles, energy and mechanical; chemical factors are 
either organic or inorganic, and biological factors entail the removal 
and addition of species. We then ask questions about the proxi-
mate effect direction (nominally positive or negative), separately 
for plants, soil microbes or soil animals (using biomass effects as the 
currency, which for example does not include effects on diversity 
within a group of biota). We include different general effect modes 
(resource, toxicant, rhythm changer: Bennie et al., 2016; soil physical 
habitat modifier: Machado et al., 2018; osmotic, general metabolic 
rate regulator). We did not distinguish among organism groups when 
effects were deemed not to differ in principle. Additionally, we in-
clude several other key properties: are effects directly on soil, or 
indirectly via plants (Kardol et al., 2010); do effects unfold in a simul-
taneous fashion on all soil biota, or are they cascade-like effects ini-
tially only affecting one type of biota; do they affect the movement 
of soil biota or not (Erktan et al., 2020); are they pulse versus press 
perturbations (Bender et al., 1984); are the factors atmospheric/
mixed or local (Sage, 2020).

The resulting classification results in a complete matrix of 30 
anthropogenic factors and all traits (Figure 1). Many factors were 
chemical in nature, followed by physical, and few factors were bio-
logical in nature; some particles are classified as both chemical and 
physical agents.

2  |  ADVANTAGES OF FAC TOR 
CL A SSIFIC ATION AND APPLIC ATION

Classifying such factors of influence could have a number of ad-
vantages. First, our ordering system captures and illustrates the di-
versity of factors affecting ecosystems better than simply listing a 
range of factors could achieve. As such, classifications such as this 
could be useful for teaching and communicating the nature of global 
change to a broader audience (Corner et al., 2018). Along these lines, 
integrating the range of factors in one common system highlights 
the fact that these are all different manifestations of anthropogenic 
influence and global change; this helps abate unhelpful debates 
about whether one global change factor is given more public atten-
tion than another, ‘stealing’ attention from more important factors. 
Perhaps shifting the focus to the diversity of factors and their traits 
also helps overcome research compartmentalization.

Importantly, we are unlikely to have already experienced and dis-
covered all global change factors: microplastic is a recent addition to 
this group, and also the realization that chemical pollutants should 
be a part of global change is rapidly increasing. This means that exist-
ing classifications also serve another important function: additional 
factors, as they are discovered or manifest themselves, can be added 
to the classification, and we can then fairly rapidly gauge how to best 
study their effects or how different or similar they are to existing 
factors. For example, should sound pollution become recognized as 
a factor of importance for soils (Rillig et al., 2019), then we could 
start systematically comparing it with existing factors to ascertain 
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how novel it is compared to the existing group of environmental 
factors.

Third, we believe that classifications can also provide an answer 
to the question of factor individuation, that is what is an individual 
factor? This question seems trivial at first, since we all work with 

factors in experiments, but it is not so easy to answer when con-
sidering a broad range of factors. For example, is ‘pollution’ a fac-
tor, or should it be specified to ‘microplastic pollution’, or to certain 
types of polymers, or forms of particles? A classification can help 
address this individuation question: if two candidate factors cannot 

F I G U R E  1  An a priori trait-based classification of 30 anthropogenic influences on terrestrial ecosystems and soils. Factors are first 
divided by their nature (physical, chemical, biological), and then subcategories of these criteria. Some factors are both physical and chemical 
in nature, as indicated by the overlap. The additional criteria (divided into proximate effect direction, effect mode and key properties) are 
presented in a non-hierarchical fashion. Grey bars signify the opposite of the trait (indicated in brackets in the criteria questions) in cases 
where responses are mutually exclusive. PFAS, per- and polyfluoroalkyl substances
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be separated by criteria that are applicable to the entire population 
of factors, they should be merged and become one factor.

A fourth point is that such classifications, as the source of dissimi-
larity among factors, could be helpful in designing experiments and for 
predicting outcomes of factors. For example, one could postulate that 
more similar factors would similarly affect ecosystems, or that more 
dissimilar factors would have a higher probability to produce joint im-
pacts deviating from additivity, that is that they could produce synergis-
tic or antagonistic effects. Such applications necessitate transforming 
the qualitative classification into a quantifiable tree or cluster analysis. 
As a case study, we did this here by coding all answers to the criteria 
used for classification (in Figure 1) as either zeros or ones. We then 
calculated a dendrogram of a hierarchical clustering of the 30 factors 
based on the traits in Figure 1, resulting in a tree in which factors with 
more similar traits are positioned closer in the tree structure (Figure 2a). 
Then, making use of the dendrogram, we examined whether factors 
with similar traits have more similar effects on soil microbial biodiver-
sity and ecosystem functioning parameters, by re-analysing an experi-
mental dataset that examined effects of 10 factors of global change on 
soils (Rillig, Ryo, et al., 2019). This experiment assessed the effects of 

10 global change factors on three biodiversity measures (fungal com-
munity richness [based on amplified sequence variants], community 
composition and community dispersion) and four soil structure and 
functioning measures (water repellency, soil aggregation stability, de-
composition rate and soil respiration; see details in Rillig, Ryo, et al., 
2019). Using the effects on these measures, we quantified the dissimi-
larities among the 10 factors and calculated a dendrogram. In addition, 
we built another dendrogram of just the 10 factors based on the clas-
sification scheme for the 30 factors (Figure 1). The structures of these 
dendrograms are more similar to each other than expected by chance 
(cophenetic correlation coefficient: mean = 0.29 [95% CI: 0.07–0.48]), 
suggesting that similar factors have similar effect characteristics. The 
similarity can be also seen (Figure 2b), as salinity, copper and drought 
are positioned closely in both dendrograms, and also biocides (fungi-
cide, insecticide and antibiotic) show the same trend.

To explore if fewer traits than the entire set could also be in-
formative, we carried out a subset analysis, in which we removed 
one of the four main trait groups (see Figure 1) in turn. When 
dropping the traits representing ‘effect mechanism’ for building 
the dendrogram, the mean correlation coefficient decreases from 

F I G U R E  2  (a) Dendrogram from a hierarchical clustering of 30 anthropogenic influences on terrestrial ecosystems and soils according 
to the similarity of an a priori trait-based classification in Figure 1. All traits are equally scaled. (b) A comparison of dendrograms of a subset 
of 10 global change factors based on the similarity in their traits and in the effects on soil microbial biodiversity and functions of these 10 
factors (measured in a soil global change experiment [5]). The two dendrograms have structures more similar to each other than expected by 
chance (cophenetic correlation coefficient: mean = 0.29 [95% CI: 0.07–0.48]), indicating that factors having similar traits affect soil microbial 
biodiversity and functions similarly
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0.29 to 0.21 and the 95% CI includes zero, suggesting that this set 
of traits is key for predicting the effect similarity among factors in 
our soil experiment. On the contrary, dropping the traits of ‘nature 
of factor’ increases the coefficient from 0.29 to 0.42, indicating 
that this set of traits is likely not important for prediction here. 
The other sets, ‘proximate effect direction’ and ‘key properties’, 
do not change the correlation coefficient (mean: 0.32 and 0.28 
respectively). These findings indicate that, starting with a compre-
hensive list, it may be possible to identify a narrower core set of 
traits important for representing the major effects of factors. Data 
and R script for these analyses are available here: https://masah​
iroryo.github.io/Class​ifyin​g-human​-influ​ences/​Rillig_etal_2020_
Appen​dix_Final.html.

3  |  OTHER CL A SSIFIC ATION 
APPROACHES AND THE WAY FORWARD

Our proposed ordering system should be understood as a starting 
point: other classification approaches are possible and should be 
explored. Notably, our approach is focused on local effects on a 
given plant–soil system. Ordering systems could also more explic-
itly focus on scale issues. For example, invasive species operate on 
a broad biogeographical scale, land use on a more regional/land-
scape scale, whereas salinity would be a much more locally acting 
factor. Additional information can also come from more detailed 
knowledge of precise effect mechanisms, if available; our classifica-
tion uses general information on mode of action rather than precise 
mechanisms. Other ordering concepts could be used or added, for 
example traits could focus on concepts related to biogeochemistry 
or trophic interactions. Further work should extend classifications 
also to the aquatic realm, including freshwater systems and the 
oceans, where other factors will come into play (e.g. acidification), 
as well as other classification criteria. Finally, the classification ap-
proach, in addition to being useful in generating hypotheses and 
informing experimental designs, can also become a powerful tool in 
data synthesis, such as in meta-analyses: here, similar factors could 
be grouped (e.g. different fertilization treatments) and their general 
effects compared with other factors or factor groups.

4  |  CONCLUSION

We hope that classifications such as the one introduced here can 
help shift the spotlight on the multitude of anthropogenic changes 
affecting ecosystems, and that such classifications can even be used, 
as an analytical tool, to help unravel joint impacts of a great number 
of concurrently acting factors.
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