81 research outputs found

    Evolution Finds Shelter in Small Spaces

    Get PDF
    When RNA is replicated in cell-free systems, a ubiquitous problem is the hijacking of the system by short parasitic RNA sequences. In this issue of Chemistry & Biology, Bansho et al. show that compartmentalization into water-in-oil droplets can ameliorate this problem, but only if the droplets are small. This result helps to both recapitulate abiogenesis and optimize synthetic biology

    Mixed Anhydrides at the Intersection Between Peptide and RNA Autocatalytic Sets: Evolution of Biological Coding

    Full text link
    We present a scenario for the origin of biological coding. In this context, coding is a semiotic relationship between chemical information stored in one location that links to chemical information stored in a separate location. Coding originated by the cooperative interaction of two, originally separate collectively autocatalytic sets, one for nucleic acids and one for peptides. When these two sets interacted, a series of RNA-folding-directed processes led to their joint cooperativity. The amino acyl adenylate, today amino acid-AMP, was the first covalent association made by these two collectively autocatalytic sets and solidified their interdependence. This molecule is a palimpsest of this era, and is a relic of the original semiotic, and thus coding, relationship between RNA and proteins. More defined coding was driven by selection pressure to eliminate waste in the collective autocatalytic sets. Eventually a 1:1 relationship between single amino acids and short RNA pieces (e.g., three nucleotides) was established, leading to what is today known as the genetic code. Transfer RNA aminoacylating enzymes, or aaRSs, arose concomitantly with the advent of specific coding. The two classes of aaRS enzymes are remnants of the duality of complementary information in two nucleic acid strands, as originally postulated by Rodin and Ohno. Every stage in the evolution of coding was driven by the downward selection on the components of a system to satisfy the Kantian whole. Coding was ultimately forced because there were at least two chemically distinct classes of polymers needed for open-ended evolution; systems with only one polymer cannot exhibit this characteristic. Coding is thus synonymous with life as we know it, and can be thought of as a phase transition in the history of the universe

    Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube

    Get PDF
    Background: During the RNA World, molecular populations were probably very small and highly susceptible to the force of strong random drift. In conjunction with Muller\u27s Ratchet, this would have imposed difficulties for the preservation of the genetic information and the survival of the populations. Mechanisms that allowed these nascent populations to overcome this problem must have been advantageous. Results: Using continuous in vitro evolution experimentation with an increased mutation rate imposed by MnCl2, it was found that clonal 100-molecule populations of ribozymes clearly exhibit certain characteristics of a quasispecies. This is the first time this has been seen with a catalytic RNA. Extensive genotypic sampling from two replicate lineages was gathered and phylogenetic networks were constructed to elucidate the structure of the evolving RNA populations. A common distribution was found in which a mutant sequence was present at high frequency, surrounded by a cloud of mutant with lower frequencies. This is a typical distribution of quasispecies. Most of the mutants in these clouds were connected by short Hamming distance values, indicating their close relatedness. Conclusions: The quasispecies nature of mutant RNA clouds facilitates the recovery of genotypes under pressure of being removed from the population by random drift. The empirical populations therefore evolved a genotypic resiliency despite a high mutation rate by adopting the characteristics of quasispecies, implying that primordial RNA pools could have used this strategy to avoid extinction

    The Chemical Origin of Behavior is Rooted in Abiogenesis

    Get PDF
    We describe the initial realization of behavior in the biosphere, which we term behavioral chemistry. If molecules are complex enough to attain a stochastic element to their structural conformation in such as a way as to radically affect their function in a biological (evolvable) setting, then they have the capacity to behave. This circumstance is described here as behavioral chemistry, unique in its definition from the colloquial chemical behavior. This transition between chemical behavior and behavioral chemistry need be explicit when discussing the root cause of behavior, which itself lies squarely at the origins of life and is the foundation of choice. RNA polymers of sufficient length meet the criteria for behavioral chemistry and therefore are capable of making a choice

    Mechanisms of Covalent Self-Assembly of the Azoarcus Ribozyme From Four Fragment Oligonucleotides

    Get PDF
    RNA oligomers of length 40–60 nt can self-assemble into covalent versions of the Azoarcus group I intron ribozyme. This process requires a series of recombination reactions in which the internal guide sequence of a nascent catalytic complex makes specific interactions with a complement triplet, CAU, in the oligomers. However, if the CAU were mutated, promiscuous self-assembly may be possible, lessening the dependence on a particular set of oligomer sequences. Here, we assayed whether oligomers containing mutations in the CAU triplet could still self-construct Azoarcus ribozymes. The mutations CAC, CAG, CUU and GAU all inhibited self-assembly to some degree, but did not block it completely in 100mM MgCl₂. Oligomers containing the CAC mutation retained the most self-assembly activity, while those containing GAU retained the least, indicating that mutations more 5’ in this triplet are the most deleterious. Self-assembly systems containing additional mutant locations were progressively less functional. Analyses of properly self-assembled ribozymes revealed that, of two recombination mechanisms possible for selfassembly, termed ‘tF2’ and ‘R2F2’, the simpler one-step ‘tF2’ mechanism is utilized when mutations exist. These data suggest that self-assembling systems are more facile than previously believed, and have relevance to the origin of complex ribozymes during the RNA World

    The elusive quest for RNA knots

    Get PDF
    Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs

    INTROGRESSION OF COYOTE MITOCHONDRIAL DNA INTO SYMPATRIC NORTH AMERICAN GRAY WOLF POPULATIONS

    Get PDF
    Mitochondrial DNA (mtDNA) genotypes of gray wolves and coyotes from localities throughout North America were determined using restriction fragment length polymorphisms. Of the 13 genotypes found among the wolves, 7 are clearly of coyote origin, indicating that genetic transfer of coyote mtDNA into wolf populations has occurred through hybridization. The transfer of mtDNA appears unidirectional from coyotes into wolves because no coyotes sampled have a wolf-derived mtDNA genotype. Wolves possessing coyote-derived genotypes are confined to a contiguous geographic region in Minnesota, Ontario, and Quebec, and the frequency of coyote- type mtDNA in these wolf populations is high (\u3e 500%). The ecological history of the hybrid zone suggests that hybridization is taking place in regions where coyotes have only recently become abundant following conversion of forests to farmlands. Dispersing male wolves unable to find conspecific mates may be pairing with female coyotes in deforested areas bordering wolf territories. Our results demonstrate that closely related species of mobile terrestrial vertebrates have the potential for extensive genetic exchange when ecological conditions change suddenly

    One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence

    Get PDF
    Catalytic RNA molecules possess simultaneously a genotype and a phenotype. However, a single RNA genotype has the potential to adopt two or perhaps more distinct phenotypes as a result of differential folding and/or catalytic activity. Such multifunctionality would be particularly significant if the phenotypes were functionally inter-related in a common biochemical pathway. Here, this phenomenon is demonstrated by the ability of the Azoarcus group I ribozyme to function when its canonical internal guide sequence (GUG) has been removed from the 5′ end of the molecule, and added back exogenously in trans. The presence of GUG triplets in non-covalent fragments of the ribozyme allow trans-splicing to occur in both a reverse splicing assay and a covalent self-assembly assay in which the internal guide sequence (IGS)-less ribozyme can put itself together from two of its component pieces. Analysis of these reactions indicates that a single RNA fragment can perform up to three distinct roles in a reaction: behaving as a portion of a catalyst, behaving as a substrate, and providing an exogenous IGS. This property of RNA to be multifunctional in a single reaction pathway bolsters the probability that a system of self-replicating molecules could have existed in an RNA world during the origins of life on the Earth

    Combination therapy with rituximab and cyclophosphamide in the treatment of anti-neutrophil cytoplasmic antibodies (ANCA) positive pulmonary hemorrhage: case report

    Get PDF
    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) with pulmonary hemorrhage is rare in childhood. Standard treatment includes corticosteroids and cyclophosphamide (CYC), which is associated with a high level of toxicity. We report a white female with ANCA positive pulmonary hemorrhage who was treated with cyclophosphamide (CYC) and rituximab (RTX) combination therapy
    corecore