34 research outputs found
Quantification of carbon monoxide emissions from African cities using TROPOMI
Carbon monoxide (CO) is an air pollutant that plays an important role in atmospheric chemistry and is mostly emitted by forest fires and incomplete combustion in, for example, road transport, residential heating, and industry. As CO is co-emitted with fossil fuel CO2 combustion emissions, it can be used as a proxy for CO2. Following the Paris Agreement, there is a need for independent verification of reported activity-based bottom-up CO2 emissions through atmospheric measurements.
CO can be observed daily at a global scale with the TROPOspheric Monitoring Instrument (TROPOMI) satellite instrument with daily global coverage at a resolution down to 5.5 × 7 km2. To take advantage of this unique TROPOMI dataset, we develop a cross-sectional flux-based emission quantification method that can be applied to quantify emissions from a large number of cities, without relying on computationally expensive inversions. We focus on Africa as a region with quickly growing cities and large uncertainties in current emission estimates. We use a full year of high-resolution Weather Research and Forecasting (WRF) simulations over three cities to evaluate and optimize the performance of our cross-sectional flux emission quantification method and show its reliability down to emission rates of 0.1 Tg CO yr−1.
Comparison of the TROPOMI-based emission estimates to the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) and Emissions Database for Global Atmospheric Research (EDGAR) bottom-up inventories shows that CO emission rates in northern Africa are underestimated in EDGAR, suggesting overestimated combustion efficiencies. We see the opposite when comparing TROPOMI to the DACCIWA inventory in South Africa and Côte d'Ivoire, where CO emission factors appear to be overestimated. Over Lagos and Kano (Nigeria) we find that potential errors in the spatial disaggregation of national emissions cause errors in DACCIWA and EDGAR respectively. Finally, we show that our computationally efficient quantification method combined with the daily TROPOMI observations can identify a weekend effect in the road-transport-dominated CO emissions from Cairo and Algiers.</p
Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies
Weighted analysis for missing values in generalized procrustes analysis
Generalized Procrustes Analysis (GPA), a popular tool in sensory science, is generally carried out on panelist data matrices averaged over replicates. This paper addresses the problem of missing values arising when panelists miss sessions. Because this does not necessarily result in missing values in the final averaged data matrices, a weighted analysis is proposed with weights set proportional to the number of replicates for each panelist product combination. In a simulation study the weighted analysis gives a better match of the rotated panelist matrices (a lower loss) than the unweighted analysis although the resulting average configuration is not significantly closer to the true configuration. The weighted analysis is a straightforward extension to GPA for dealing with missing sessions and offers an improved basis on which to evaluate panelist performance
Sensory evaluation plays a pivotal role in the quality improvement of processed agricultural products (in Dutch)
Meer aandacht voor de 'innerlijke' kwaliteit van groenten en frui