94 research outputs found
Bias reduction in traceroute sampling: towards a more accurate map of the Internet
Traceroute sampling is an important technique in exploring the internet
router graph and the autonomous system graph. Although it is one of the primary
techniques used in calculating statistics about the internet, it can introduce
bias that corrupts these estimates. This paper reports on a theoretical and
experimental investigation of a new technique to reduce the bias of traceroute
sampling when estimating the degree distribution. We develop a new estimator
for the degree of a node in a traceroute-sampled graph; validate the estimator
theoretically in Erdos-Renyi graphs and, through computer experiments, for a
wider range of graphs; and apply it to produce a new picture of the degree
distribution of the autonomous system graph.Comment: 12 pages, 3 figure
Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation
Betatron X-ray radiation in laser-plasma accelerators is produced when
electrons are accelerated and wiggled in the laser-wakefield cavity. This
femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt
range has been observed at different interaction regime using high power laser
from 10 to 100 TW. However, none of the spectral measurement performed were at
sufficient resolution, bandwidth and signal to noise ratio to precisely
determine the shape of spectra with a single laser shot in order to avoid shot
to shot fluctuations. In this letter, the Betatron radiation produced using a
80 TW laser is characterized by using a single photon counting method. We
measure in single shot spectra from 8 to 21 keV with a resolution better than
350 eV. The results obtained are in excellent agreement with theoretical
predictions and demonstrate the synchrotron type nature of this radiation
mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our
experimental conditions. In addition, the features of the source at this energy
range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure
A propos des paysages urbains savoyards : l'importance et le rôle des petites villes dans l'histoire et la civilisation du XVe siècle
Leguay J.-P. A propos des paysages urbains savoyards : l'importance et le rôle des petites villes dans l'histoire et la civilisation du XVe siècle. In: Le Globe. Revue genevoise de géographie, tome 125, 1985. Les Alpes dans le temps et dans l'espace. pp. 171-183
Distributed Data Storage and Retrieval Schemes in RPL/IPv6-based networks
This chapter deals with distributed data storage and retrieval techniques in WSNs. The focus is on WSN systems for the Internet of Things (IoT), a new vision of the Internet aiming at pushing IP conne tivity into smart objects. The range of objects involved in the Internet of Things also encompasses Radio Frequency Identi ation (RFID) and Machine-to-Machine (M2M) systems, to cite a few. These technologies will be also described in detail
Data dissemination scheme for distributed storage for IoT observation systems at large scale
In the emerging field of the Internet of Things (IoT), Wireless Sensor Networks (WSNs) have a key role to play in sensing and collecting measures on the surrounding environment. In the deployment of large scale observation systems in remote areas, when there is not a permanent connection with the Internet, WSNs are calling for replication and distributed storage techniques that increase the amount of data stored within the WSN and reduce the probability of data loss. Unlike conventional network data storage, WSN-based distributed storage is constrained by the limited resources of the sensors. In this paper, we propose a low-complexity distributed data replication mechanism to increase the resilience of WSN-based distributed storage at large scale. In particular, we propose a simple, yet accurate, analytical modeling framework and an extensive simulation campaign, which complement experimental results on the SensLab testbed. The impact of several key parameters on the system performance is investigated
Data storage and retrieval with RPL routing
In scenarios like the surveillance of isolated areas, when the border node of a network does not have a permanent connection with the Internet, Wireless Sensor Networks (WSNs) are calling for resilient in-network data storage techniques which minimize the risk of data loss. The efficiency of these techniques can be largely improved exploiting information on the status of the network, such as that used by routing protocols. In particular, one of the most used protocol in Internet of Things (IoT) scenarios is the IPv6 Routing Protocol for Low power and lossy networks (RPL). In this paper, we propose a redundant distributed data storage and retrieval mechanism to increase the resilience and storage capacity of a RPL-based WSN against local memory shortage. We evaluate our approach in the Contiki operating system through extensive analysis with the Cooja simulator
- …