913 research outputs found

    Effects of oxygen depletion on soot production, emission and radiative heat transfer in opposed-flow flame spreading over insulated wire in microgravity

    Get PDF
    This paper investigates experimentally and numerically pressure effects on soot production and radiative heat transfer in non-buoyant opposed-flow flames spreading over wires coated by Low Density PolyEthylene (LPDE). Experiments, conducted in parabolic flights, consider pressure levels ranging from 50.7 kPa to 121.6 kPa and an oxidizer flowing parallel to the wire's axis at a velocity of 150 mm/s and composed of 20% O2/80% N2 in volume. The numerical model includes a detailed chemistry, a two-equation smoke-point based soot production model, a radiation model coupling the Full-Spectrum correlated-k method with the finite volume method and a simple degradation model for LDPE. An analysis of the experimental data shows that the spread rate, the pyrolysis mass flow rate, and the residence time for soot formation are independent of pressure whereas the soot formation rate is third-order in pressure. The model reproduces quantitatively the effects of pressure on soot production and captures the transition from non-smoking to smoking flames. The radiant fraction increases with pressure because of an enhancement in soot radiation whereas the contribution of radiating gases remains approximately constant over the range of pressures considered. In addition, gas radiation dominates at pressure lower than 75 kPa whereas soot radiation prevails at higher-pressure levels. Consistently with the data obtained at normal gravity, the smoke-point transition is found to occur for a radiant fraction of about 0.3 and the soot oxidation freezing temperature is estimated in the range 1350-1450K. Eventually, whatever the pressure considered, the surface re-radiation from the wire is higher than the incident radiative flux from the flame to the surface along the entire wire. This shows that radiative heat transfer contributes negatively to the heating of the unburnt LDPE and to the heat balance along the pyrolysing surface

    Death rates from malaria epidemics, Burundi and Ethiopia.

    Get PDF
    Death rates exceeded emergency thresholds at 4 sites during epidemics of Plasmodium falciparum malaria in Burundi (2000-2001) and in Ethiopia (2003-2004). Deaths likely from malaria ranged from 1,000 to 8,900, depending on site, and accounted for 52% to 78% of total deaths. Earlier detection of malaria and better case management are needed

    T. brucei cathepsin-L increases arrhythmogenic sarcoplasmic reticulum-mediated calcium release in rat cardiomyocytes

    Get PDF
    Aims: African trypanosomiasis, caused by Trypanosoma brucei species, leads to both neurological and cardiac dysfunction and can be fatal if untreated. While the neurological-related pathogenesis is well studied, the cardiac pathogenesis remains unknown. The current study exposed isolated ventricular cardiomyocytes and adult rat hearts to T. brucei to test whether trypanosomes can alter cardiac function independent of a systemic inflammatory/immune response. Methods and results: Using confocal imaging, T. brucei and T. brucei culture media (supernatant) caused an increased frequency of arrhythmogenic spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release (Ca2+ waves) in isolated adult rat ventricular cardiomyocytes. Studies utilising inhibitors, recombinant protein and RNAi all demonstrated that this altered SR function was due to T. brucei cathepsin-L (TbCatL). Separate experiments revealed that TbCatL induced a 10–15% increase of SERCA activity but reduced SR Ca2+ content, suggesting a concomitant increased SR-mediated Ca2+ leak. This conclusion was supported by data demonstrating that TbCatL increased Ca2+ wave frequency. These effects were abolished by autocamtide-2-related inhibitory peptide, highlighting a role for CaMKII in the TbCatL action on SR function. Isolated Langendorff perfused whole heart experiments confirmed that supernatant caused an increased number of arrhythmic events. Conclusion: These data demonstrate for the first time that African trypanosomes alter cardiac function independent of a systemic immune response, via a mechanism involving extracellular cathepsin-L-mediated changes in SR function

    Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells

    Get PDF
    Chronic myeloid leukaemia (CML) is maintained by a rare population of tyrosine kinase inhibitor (TKI)-insensitive malignant stem cells. Our long-term aim is to find a BcrAbl-independent drug that can be combined with a TKI to improve overall disease response in chronic-phase CML. Omacetaxine mepesuccinate, a first in class cetaxine, has been evaluated by clinical trials in TKI-insensitive/resistant CML. Omacetaxine inhibits synthesis of anti-apoptotic proteins of the Bcl-2 family, including (myeloid cell leukaemia) Mcl-1, leading to cell death. Omacetaxine effectively induced apoptosis in primary CML stem cells (CD34<sup>+</sup>38<sup>lo</sup>) by downregulation of Mcl-1 protein. In contrast to our previous findings with TKIs, omacetaxine did not accumulate undivided cells <i>in vitro</i>. Furthermore, the functionality of surviving stem cells following omacetaxine exposure was significantly reduced in a dose-dependant manner, as determined by colony forming cell and the more stringent long-term culture initiating cell colony assays. This stem cell-directed activity was not limited to CML stem cells as both normal and non-CML CD34<sup>+</sup> cells were sensitive to inhibition. Thus, although omacetaxine is not leukaemia stem cell specific, its ability to induce apoptosis of leukaemic stem cells distinguishes it from TKIs and creates the potential for a curative strategy for persistent disease

    Large-scale Spacecraft Fire Safety Tests

    Get PDF
    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation
    • …
    corecore