18 research outputs found

    Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    Get PDF
    1] Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the AdĂ©lie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the AdĂ©lie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the AdĂ©lie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the AdĂ©lie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr−1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW

    Quantifying the seasonal “breathing” of the Antarctic ice sheet

    Get PDF
    [1] One way to estimate the mass balance of an ice sheet is to convert satellite observed surface elevation changes into mass changes. In order to do so, elevation and mass changes due to firn processes must be taken into account. Here, we use a firn densification model to simulate seasonal variations in depth and mass of the Antarctic firn layer, and assess their influence on surface elevation. Forced by the seasonal cycle in temperature and accumulation, a clear seasonal cycle in average firn depth of the Antarctic ice sheet (AIS) is found with an amplitude of 0.026 m, representing a volume oscillation of 340 km3. The phase of this oscillation is rather constant across the AIS: the ice sheet volume increases in austral autumn, winter and spring and quickly decreases in austral summer. Seasonal accumulation differences are the major driver of this annual ‘breathing’, with temperature fluctuations playing a secondary role. The modeled seasonal elevation signal explains 31% of the seasonal elevation signal derived from ENVISAT radar altimetry, with both signals having similar phase

    Ice regime of lake Baikal from historical and satellite data: Influence of thermal and dynamic factors.

    No full text

    Lakes and subglacial hydrological networks around Dome C, East Antarctica

    No full text
    Precise topography from European Remote-sensing Satellite radar altimetry and high density of airborne radio-echo sounding in the area surrounding Dome C, Antarctica, show a link between surface features and subglacial lakes. In this paper, we extend the study to fine structures by computing a curvature-based coefficient (cy) related to surface undulations. These coefficient variations reveal many surface undulations, and some elongated features of this parameter seem to link known subglacial lakes. A population of high values of this coefficient, assumed to correspond to transitions between sliding and non-sliding flow regime, strengthen the appearance of a network which would link most of the lakes in the area. The existence of such a network impacts on ice-flow dynamics and on subglacial-lake studies.Published252-2563.8. Geofisica per l'ambienteJCR Journalreserve
    corecore