69 research outputs found

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Thiol/disulfide formation associated with the redox activity of the [Fe3S4] cluster of Desulfovibrio gigas ferredoxin II. 1H NMR and Mossbauer spectroscopic study

    No full text
    NIGMS NIH HHS (GM-41482)Desulfovibrio gigas ferredoxin II (FdII) is a small protein (α4 subunit structure as isolated; M(r) ≃ 6400 per subunit; 6 cysteine residues) containing one Fe3S4 cluster per α-subunit. The x-ray structure of FdII has revealed a disulfide bridge formed by Cys-18 and Cys-42 approximately 13 Å away from the center of the cluster; moreover, the x-ray structure indicates that Cys-11 forms a disulfide bridge with a methanethiol. In the oxidized state, FdII(ox), the 1H NMR spectra, exhibit four low-field contact-shifted resonances at 29, 24, 18, and 15.5 ppm whereas the reduced state, FdII(R) (S = 2), yields two features at +18.5 and -11 ppm. In the course of studying the redox behavior of FdII, we have discovered a stable intermediate, FdII(int), that yields 1H resonances at 24, 21.5, 21, and 14 ppm. This intermediate appears in the potential range where the cluster (E'0 ≃ -130 mV) is reduced from the [Fe3S4]1+ to the [Fe3S4]0 state. FdII(int) is observed during reductive titrations with dithionite or hydrogen/hydrogenase or after partial oxidation of FdII(R) by 2,6- dichlorophenolindophenol or air. Our studies show that a total of three electrons per α-subunit are transferred to FdII. Our experiments demonstrate the absence of a methanethiol-Cys-11 linkage in our preparations, and we propose that two of the three electrons are used for the reduction of the disulfide bridge. Mossbauer (and EPR) studies show that the Fe3S4 cluster of FdII(int) is at the same oxidation level as FdII(ox), but indicate some changes in the exchange couplings among the three ferric sites. Our data suggest that the differences in the NMR and Mossbauer spectra of FdII(ox) and FdII(int) result from conformational changes attending the breaking or formation of the disulfide bridge. The present study suggests that experiments be undertaken to explore an in vivo redox function for the disulfide bridge.publishersversionpublishe
    • …
    corecore