35 research outputs found
Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation.
New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18-118 nM to 180-890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 μM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3.IMPORTANCE Benzoxaboroles are under study as potential new drugs to treat malaria. One benzoxaborole, AN13762, has potent activity and promising features, but its mechanisms of action and resistance are unknown. To gain insights into these mechanisms, we cultured malaria parasites with nonlethal concentrations of AN13762 and generated parasites with varied levels of resistance. Parasites with low-level resistance had mutations in PfPARE, which processes AN13762 into an active metabolite; PfPARE mutations prevented this processing. Parasites with high-level resistance had mutations in any of a number of enzymes, mostly those involved in stress responses. Parasites selected for AN13762 resistance were not resistant to other antimalarials, suggesting novel mechanisms of action and resistance for AN13762, a valuable feature for a new class of antimalarial drugs
Is universal HBV vaccination of healthcare workers a relevant strategy in developing endemic countries? The case of a university hospital in Niger.
BACKGROUND: Exposure to hepatitis B virus (HBV) remains a serious risk to healthcare workers (HCWs) in endemic developing countries owing to the strong prevalence of HBV in the general and hospital populations, and to the high rate of occupational blood exposure. Routine HBV vaccination programs targeted to high-risk groups and especially to HCWs are generally considered as a key element of prevention strategies. However, the high rate of natural immunization among adults in such countries where most infections occur perinatally or during early childhood must be taken into account. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a cross sectional study in 207 personnel of 4 occupational groups (medical, paramedical, cleaning staff, and administrative) in Niamey's National Hospital, Niger, in order to assess the prevalence of HBV markers, to evaluate susceptibility to HBV infection, and to identify personnel who might benefit from vaccination. The proportion of those who declared a history of occupational blood exposure ranged from 18.9% in the administrative staff to 46.9% in paramedical staff. Only 7.2% had a history of vaccination against HBV with at least 3 injections. Ninety two percent were anti-HBc positive. When we focused on170 HCWs, only 12 (7.1%) showed no biological HBV contact. Twenty six were HBsAg positive (15,3%; 95% confidence interval: 9.9%-20.7%) of whom 8 (32%) had a viral load >2000 IU/ml. CONCLUSIONS/SIGNIFICANCE: The very small proportion of HCWs susceptible to HBV infection in our study and other studies suggests that in a global approach to prevent occupational infection by bloodborne pathogens, a universal hepatitis B vaccination of HCWs is not priority in these settings. The greatest impact on the risk will most likely be achieved by focusing efforts on primary prevention strategies to reduce occupational blood exposure. HBV screening in HCWs and treatment of those with chronic HBV infection should be however considered
Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P(1) - P(4) amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P(2) position. Second, with overlapping peptides spanning alpha and beta globin and proteolysis-dependent (18)O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P(2) Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents
Dysregulation of apoptosis and autophagy gene expression in peripheral blood mononuclear cells of efficiently treated HIV-infected patients
International audienceOBJECTIVE:We measure the transcript levels of the proapoptotic GALIG, antiapoptotic MCL1 genes and those of the autophagy genes BECN1, MAP1LC3B, ATG9a, P62/SQSTM1, GABARAP, GABARAPL1 and GABARAPL2 to define if mRNA alteration can characterize HIV-infected patients effectively treated with combined antiretroviral therapy (cART).DESIGN:Monocentric pilot study conducted on peripheral blood mononuclear cell (PBMC) of 40 uninfected donors and 27 HIV-positive patients effectively treated by cART for at least 8.4 years.METHODS:Transcripts of the various genes were quantified by reverse transcription (RT)-quantitative PCR (qPCR) and RT-droplet digital PCR and compared using the standard statistical Mann-Whitney U test and machine learning algorithms.RESULTS:A concomitant overexpression of GALIG and MCL1 is detected in PBMC of effectively cART-treated patients. Overexpression of MAP1LC3B and GABARAPL1 is also measured, whereas BECN1 is underexpressed. Finally, accurate classification (94.5%) of our PBMC samples as HIV-negative donors or HIV-positive cART-treated is obtained in three separate machine-learning algorithms with GABARAPL1 and ATG9a as input variables.CONCLUSION:cART-treated HIV patients display altered transcript levels for three genes of basal autophagy. Some of these alterations may appear contradictory: BECN1 and ATG9a, both key actors in the formation of mammalian autophagosome, exhibit decreased amount of transcripts, whereas mRNA from the ATG8 family increase. Given the known role of impaired basal autophagy in immune senescence and chronic inflammation, the functional significance of our findings should be explored in larger studies
Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation
Benzoxaboroles are under study as potential new drugs to treat malaria. One benzoxaborole, AN13762, has potent activity and promising features, but its mechanisms of action and resistance are unknown. To gain insights into these mechanisms, we cultured malaria parasites with nonlethal concentrations of AN13762 and generated parasites with varied levels of resistance. Parasites with low-level resistance had mutations in PfPARE, which processes AN13762 into an active metabolite; PfPARE mutations prevented this processing. Parasites with high-level resistance had mutations in any of a number of enzymes, mostly those involved in stress responses. Parasites selected for AN13762 resistance were not resistant to other antimalarials, suggesting novel mechanisms of action and resistance for AN13762, a valuable feature for a new class of antimalarial drugs.New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18–118 nM to 180–890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 μM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3
Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation.
New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18–118 nM to 180–890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 μM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3
Kaplan-Meier curves of time without viral failure (VF, >200 cp/mL) in patients switching to to unboosted (ATV<sub>0</sub>) versus boosted (ATV/r) atazanavir-based regimens in propensity-matched subgroups.
<p>Kaplan-Meier curves of time without viral failure (VF, >200 cp/mL) in patients switching to to unboosted (ATV<sub>0</sub>) versus boosted (ATV/r) atazanavir-based regimens in propensity-matched subgroups.</p
Characteristics of personnel (n = 207) at Niamey’s National Hospital, Niger, 2009.
<p>Characteristics of personnel (n = 207) at Niamey’s National Hospital, Niger, 2009.</p
Prevalence of immunity due to natural infection (previously infected; Anti-HBc positive and HBsAg negative) by age group in personnel at Niamey’s National Hospital, Niger, 2009.
*<p>Chi2 trend test.</p