3,366 research outputs found
First numerical evidence of global Arnold diffusion in quasi--integrable systems
We provide numerical evidence of global diffusion occurring in slightly
perturbed integrable Hamiltonian systems and symplectic maps. We show that even
if a system is sufficiently close to be integrable, global diffusion occurs on
a set with peculiar topology, the so--called Arnold web, and is qualitatively
different from Chirikov diffusion, occurring in more perturbed systems.Comment: 8 pages 3 figure
Migration of Earth-size planets in 3D radiative discs
In this paper, we address the migration of small mass planets in 3D radiative
disks. Indeed, migration of small planets is known to be too fast inwards in
locally isothermal conditions. However, thermal effects could reverse its
direction, potentially saving planets in the inner, optically thick parts of
the protoplanetary disc. This effect has been seen for masses larger than 5
Earth masses, but the minimum mass for this to happen has never been probed
numerically, although it is of crucial importance for planet formation
scenarios. We have extended the hydro-dynamical code FARGO to 3D, with thermal
diffusion. With this code, we perform simulations of embedded planets down to 2
Earth masses. For a set of discs parameters for which outward migration has
been shown in the range of Earth masses, we find that the transition
to inward migration occurs for masses in the range Earth masses. The
transition appears to be due to an unexpected phenomenon: the formation of an
asymmetric cold and dense finger of gas driven by circulation and libration
streamlines. We recover this phenomenon in 2D simulations where we control the
cooling effects of the gas through a simple modeling of the energy equation.Comment: 17 pages, 20 figures, accepted. MNRAS, 201
Effect of disjoining pressure in a thin film equation with\ud non-uniform forcing
We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotics expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions
Majorana Fermions and Orthogonal Complex Structures
Ground states of quadratic Hamiltonians for fermionic systems can be
characterized in terms of orthogonal complex structures. The standard way in
which such Hamiltonians are diagonalized makes use of a certain "doubling" of
the Hilbert space. In this work we show that this redundancy in the Hilbert
space can be completely lifted if the relevant orthogonal structure is taken
into account. Such an approach allows for a treatment of Majorana fermions
which is both physically and mathematically transparent. Furthermore, an
explicit connection between orthogonal complex structures and the topological
-invariant is given.Comment: 15 pages, 6 figures, typos correcte
Report drawn up on behalf of the Committee on Budgets on the proposal from the Commission of the European Communities to the Council for a regulation amending the Staff Regulations of Officials and the conditions of Employment of other servants of the European Communities (Doc. 1-451/81). EP Working Documents, document 1-627/81, 26 October 1981.
Highly inclined and eccentric massive planets I: Planet-disc interactions
In the Solar System, planets have a small inclination with respect to the
equatorial plane of the Sun, but there is evidence that in extrasolar systems
the inclination can be very high. This spin-orbit misalignment is unexpected,
as planets form in a protoplanetary disc supposedly aligned with the stellar
spin. Planet-planet interactions are supposed to lead to a mutual inclination,
but the effects of the protoplanetary disc are still unknown. We investigate
therefore planet-disc interactions for planets above 1M_Jup. We check the
influence of the inclination i, eccentricity e, and mass M_p of the planet. We
perform 3D numerical simulations of protoplanetary discs with embedded
high-mass planets. We provide damping formulae for i and e as a function of i,
e, and M_p that fit the numerical data. For highly inclined massive planets,
the gap opening is reduced, and the damping of i occurs on time-scales of the
order of 10^-4 deg/yr M_disc/(0.01 M_star) with the damping of e on a smaller
time-scale. While the inclination of low planetary masses (<5M_Jup) is always
damped, large planetary masses with large i can undergo a Kozai-cycle with the
disc. These Kozai-cycles are damped in time. Eccentricity is generally damped,
except for very massive planets (M_p = 5M_Jup) where eccentricity can increase
for low inclinations. The dynamics tends to a final state: planets end up in
midplane and can then, over time, increase their eccentricity as a result of
interactions with the disc. The interactions with the disc lead to damping of i
and e after a scattering event of high-mass planets. If i is sufficiently
reduced, the eccentricity can be pumped up because of interactions with the
disc. If the planet is scattered to high inclination, it can undergo a
Kozai-cycle with the disc that makes it hard to predict the exact movement of
the planet and its orbital parameters at the dispersal of the disc.Comment: accepted for publication in Astronomy and Astrophysic
- …
