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ABSTRACT

Context. In the solar system, planets have a small inclination with respect to the equatorial plane of the Sun, but there is evidence that
in extrasolar systems the inclination can be very high. This spin-orbit misalignment is unexpected, as planets form in a protoplanetary
disc supposedly aligned with the stellar spin. It has been proposed that planet-planet interactions can lead to mutual inclinations during
migration in the protoplanetary disc. However, the effect of the gas disc on inclined giant planets is still unknown.
Aims. In this paper we investigate planet-disc interactions for planets above 1 MJup. We check the influence of three parameters: the
inclination i, eccentricity e, and mass Mp of the planet. This analysis also aims at providing a general expression of the eccentricity
and inclination damping exerted on the planet by the disc.
Methods. We perform three-dimensional numerical simulations of protoplanetary discs with embedded high-mass planets on fixed
orbits. We use the explicit/implicit hydrodynamical code NIRVANA in 3D with an isothermal equation of state.
Results. We provide damping formulae for i and e as a function of i, e, and Mp that fit the numerical data. For highly inclined massive
planets, the gap opening is reduced, and the damping of i occurs on time-scales of the order of 10−4 deg/year · Mdisc/(0.01 M�) with
the damping of e on a smaller time-scale. While the inclination of low planetary masses (<5 MJup) is always damped, large planetary
masses with large i can undergo a Kozai-cycle with the disc. These Kozai-cycles are damped through the disc in time. Eccentricity is
generally damped, except for very massive planets (Mp ∼ 5 MJup) where eccentricity can increase for low inclinations. So the dynamics
tends to a final state: planets end up in midplane and can then, over time, increase their eccentricity as a result of interactions with the
disc.
Conclusions. The interactions with the disc lead to damping of i and e after a scattering event of high-mass planets. If i is sufficiently
reduced, the eccentricity can be pumped up because of interactions with the disc. If the planet is scattered to high inclination, it can
undergo a Kozai-cycle with the disc that makes it hard to predict the exact movement of the planet and its orbital parameters at the
dispersal of the disc.

Key words. accretion, accretion disks – planets and satellites: formation – hydrodynamics – planet-disk interactions

1. Introduction

In the solar system, the orbits of all the planets are nearly copla-
nar (within 4 degrees, except for Mercury). The ecliptic (the
plane of the Earth’s orbit) is also close to the equatorial plane
of the Sun: the spin-orbit misalignment is only β⊕ = 7.5◦. The
low inclination of the massive planets with respect to the ecliptic
is normally taken as an indication that planets form within a flat-
tened protoplanetary disc, itself closely aligned with the stellar
equator. The newly discovered Kepler-30 system (Sanchis-Ojeda
et al. 2012) is even flatter, and confirms this view. However,
exo-planets with strong spin-orbit misalignment have been de-
tected (e.g. β > 50◦; Moutou et al. 2011a,b; Hébrard et al. 2011;
Simpson et al. 2011). Considering that the plane of the past pro-
toplanetary disc should be identical to the present stellar equa-
tor1, the orbital plane of these planets must have been changed
by some mechanism.

One process generally invoked to explain inclined orbits is
scattering by multiple planets in the system after the protoplan-
etary disc has dissipated (e.g. Marzari & Weidenschilling 2002;

1 This is generally accepted, but is actually the subject of debate (see
e.g. Cébron et al. 2011; Batygin 2012).

Chatterjee et al. 2008; Jurić & Tremaine 2008). These works as-
sume that unstable crowded systems are formed, and undergo
planet-planet scattering after a relatively short time when the
gas nebula dissipates. However, recent work suggests that un-
stable systems reach instability while still embedded in the gas
disc (Lega et al. 2013). A second process is planet-planet inter-
actions during migration in the protoplanetary disc (Thommes
& Lissauer 2003; Libert & Tsiganis 2009, 2011a,b). During the
gas-driven migration, the system can enter an inclination-type
resonance or the resonant configuration becomes unstable as the
resonance excites the eccentricities of the planets and planet-
planet scattering sets in. All this affirms the need for a bet-
ter understanding of the interactions between giant planets and
a gaseous protoplanetary disc when the orbit of the former is
highly inclined with respect to the midplane of the later. Here,
we study this phenomenon, in detail.

Tanaka & Ward (2004) have shown in linear studies that the
inclination of a low-mass planet embedded in a disc is exponen-
tially damped by planet-disc interactions for any non-vanishing
inclination. Such results are formally valid only for i � H/r.
However, numerical simulations of more highly inclined plan-
ets have shown that the exponential damping might be valid up
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to i ≈ 2H/r. If the planet has an even greater inclination, the
damping rates deviate from being exponential and it can be fit-
ted by a di/dt ∝ i−2 function (Cresswell et al. 2007; Bitsch &
Kley 2011). However, for high-mass planets, the linear regime
is no longer valid. Marzari & Nelson (2009) considered Jovian-
type planets on inclined and eccentric orbits. They find highly
inclined and eccentric planets with Jovian masses lose their in-
clination and eccentricity very quickly (on a time-scale of the
order of 103 years) when entering the disc again (when i < H/r).
Since a highly inclined planet is only slightly disturbed by the
accretion disc (and vice versa), this kind of planet is only able to
open a gap in the disc when the inclination drops to i < 10.0◦.

Planet-disc interactions also influence the eccentricity of em-
bedded planets, as has been shown by Goldreich & Tremaine
(1980). It has been suggested, by performing linear analysis, that
the planetary eccentricity can be increased through planet-disc
interaction under some conditions (Goldreich & Sari 2003; Sari
& Goldreich 2004; Moorhead & Adams 2008). They estimate
that eccentric Lindblad resonances can cause eccentricity growth
for gap-forming planets. However, numerical simulations show
that eccentricity in the disc is damped for a variety of masses
(Cresswell et al. 2007; Moorhead & Ford 2009; Bitsch & Kley
2010).

For very-high-mass planets, on the other hand an eccentric
instability in the disc can arise (Kley & Dirksen 2006). In turn,
this eccentric disc can possibly increase the planetary eccentric-
ity (Papaloizou et al. 2001; D’Angelo et al. 2006). However,
this process can only explain the eccentricity of very massive
(≈5–10 MJup) planets. Xiang-Gruess & Papaloizou (2013) have
recently studied the interactions between Jupiter-mass planets
and circumstellar discs as well. However, they did not consider
planets on eccentric orbits and they were using SPH simulations,
while we use a grid-based code.

In this paper, we investigate planet-disc interactions for plan-
ets above 1 MJup, considering different inclination and eccentric-
ity values. Our analysis also aims at deriving a formula for the
change of eccentricity and inclination due to planet-disc interac-
tions, in order to study the long-term evolution of systems with
massive planets. Indeed, long-term evolution studies of plane-
tary systems cannot be done with hydrodynamical simulations,
as the computation time is too long, and N-Body codes that con-
sider the gravitational effects only are used. A correct damping
rate of eccentricity and inclination is needed in order to simu-
late the evolution correctly. This study will be the topic of our
Paper II.

We use isothermal three-dimensional (3D) simulations to de-
termine the change of inclination and eccentricity due to planet
disc interactions. In Sect. 2 we describe the numerical methods
used, as well as the procedure to calculate the forces acting on
the embedded planets to determine di/dt and de/dt. In Sect. 3 we
show di/dt and de/dt as a function of inclination i and eccentric-
ity e, and provide fitting formulae. Additionally an observed os-
cillatory behaviour is discussed in this section. The implications
for single-planet systems are shown in Sect. 4.

2. Physical modelling

The protoplanetary disc is modelled as a 3D, non-self-
gravitating gas whose motion is described by the Navier-Stokes
equations. We use the code Nirvana (Ziegler & Yorke 1997;
Kley et al. 2001), which uses the FARGO-algorithm (Masset
2000) and was described in our earlier work on planets on in-
clined orbits (Bitsch & Kley 2011). We note that the use of
the FARGO-algorithm may not be straight forward in the case of

highly inclined planets (i = 75.0◦). Our test simulations, how-
ever, show that this algorithm can also be used in highly inclined
planets, see Appendix. A. Here we treat the disc as a viscous
medium in the locally isothermal regime. We do not use radia-
tion transport, as we focus here on high-mass planets that open
a gap inside a disc, where the effects of heating and cooling of
the disc are much less important than for low-mass planets (Kley
et al. 2009). A more detailed description of the used code can be
found in Kley et al. (2009).

2.1. Smoothing of the planetary potential

An important issue in modelling planetary dynamics in discs is
the gravitational potential of the planet since this has to be ar-
tificially smoothed to avoid singularities. While in two dimen-
sions a potential smoothing takes care of the otherwise neglected
vertical extension of the disc, in 3D simulations the most accu-
rate potential should be used. As the planetary radius is much
smaller than a typical grid cell, and the planet is treated as a
point mass, a smoothing of the potential is required to ensure
numerical stability.

In Kley et al. (2009) two different kinds of planetary poten-
tials for 3D discs have been discussed. The first is the classic
εsm-potential

Φεsm
p = −

GMp√
d2 + ε2sm

· (1)

Here MP is the planetary mass, and d = |r − rP| denotes the dis-
tance of the disc element to the planet. This potential has the
advantage that it leads to very stable evolutions when the param-
eter εsm is a significant fraction of the Roche radius. The disad-
vantage is that for smaller εsm, which would yield a higher accu-
racy at larger d, the potential becomes very deep at the planetary
position. Additionally, the potential differs from the exact 1/r
potential even for medium to larger distances d from the planet.

To resolve these problems at small and large d simultane-
ously, the following cubic-potential has been suggested (Klahr
& Kley 2006; Kley et al. 2009)

Φcub
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −
GMp

d

[(
d

rsm

)4 − 2
(

d
rsm

)3
+ 2 d

rsm

]
for d ≤ rsm .

−GMp

d for d > rsm.
(2)

The construction of the planetary potential is such that for dis-
tances larger than rsm the potential matches the correct 1/r po-
tential. Inside this radius (d < rsm) it is smoothed by a cubic
polynomial. This potential has the advantage of exactness out-
side the specified distance rsm, while being finite inside.

For 1 MJup and 5 MJup we use the cubic potential with rsm =
0.8RH. For the 10 MJup planet, we use the εsm-potential with
rsm = 0.8RH, with the Hill radius RH given by

RH = ap

(
Mp

3M�

)1/3

, (3)

where ap is the semi major axis of the planet, and M� is the mass
of the central star.

As the planetary mass increases, so does the amount of ma-
terial accumulated near the planet. In order to resolve the gra-
dients of density in that region correctly, a much higher resolu-
tion is required. Therefore, we change the cubic potential to the
εsm-potential for the 10 MJup planet. For the torque acting on the
planets, the consequences are minimal, as we use a torque cut-
off function in the Hill sphere of the planet, as described below.
Additional information regarding the smoothing length can be
found in Appendix A.
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2.2. Initial setup

The 3D (r, θ, φ) computational domain consists of a complete
annulus of the protoplanetary disc centred on the star, extend-
ing from rmin = 0.2 to rmax = 4.2 in units of r0 = aJup = 5.2
AU, where we put the planet. The planet is held on a fixed or-
bit during the evolution. The eccentricity of the planet can be
e0 = 0.0, e0 = 0.2, or e0 = 0.4. We use 390 × 48 × 576 active
cells for the simulations with 1 MJup and 260 × 32 × 384 active
cells for 5 MJup and 10 MJup. This resolution is sufficient, as we
still resolve the horseshoe width with a few grid cells for all plan-
etary masses. The horseshoe width is defined for large planets as
xs =

√
12aP(q/3)1/3 (Masset et al. 2006), where q is the planet-

star mass ratio. Tests regarding the numerical resolution can be
found in Appendix A.

In the vertical direction, the annulus extends 7◦ below and
above the disc’s midplane, meaning 83◦ < θ < 97◦. Here θ
denotes the polar angle of our spherical polar coordinate sys-
tem measured from the polar axis, therefore the midplane of the
disc is at θ = 90.0◦. We use closed boundary conditions in the
radial and vertical directions. In the azimuthal direction, peri-
odic boundary conditions are used. The central star has one so-
lar mass M∗ = M�, and the total disc mass inside [rmin, rmax]
is Mdisc = 0.01M�. The aspect ratio of the disc is H/r = 0.05.
We use an α prescription of the viscosity, where ν = αc2

s/ΩK
(Shakura & Sunyaev 1973) with α = 0.005 ; ΩK is the Kepler
frequency ; cs =

√
P/ρ denotes the isothermal sound speed,

P the pressure, ρ the volume density of the gas, and H = cs/Ω.
The models are initialised with constant temperatures on

cylinders with a profile T (s) ∝ s−1 with s = r sin θ. This yields a
constant ratio of the disc’s vertical height H to the radius s. The
initial vertical density stratification is given approximately by a
Gaussian

ρ(r, θ) = ρ0(r) exp

[
− (π/2 − θ)2 r2

2H2

]
· (4)

Here, the density in the midplane is ρ0(r) ∝ r−1.5 which leads
to a Σ(r) ∝ r−1/2 profile of the vertically integrated surface den-
sity. In the radial and θ-direction we set the initial velocities to
zero, while for the azimuthal component the initial velocity uφ is
given by the equilibrium of gravity, centrifugal acceleration and
the radial pressure gradient. This corresponds to the equilibrium
configuration for a purely isothermal disc with constant viscos-
ity. However, as the massive planets in the disc start to open gaps,
the density and surface density profile get distorted.

2.3. Calculation of forces

To determine the change of orbital elements for planets on fixed
inclined orbits, we follow Burns (1976) and compute the forces
as described in Bitsch & Kley (2011). The gravitational torques
and forces acting on the planet are calculated by integrating over
the whole disc, where we apply a tapering function to exclude
the inner parts of the Hill sphere of the planet. Specifically, we
use the smooth (Fermi-type) function

fb(d) =

[
exp

(
−d/RH − b

b/10

)
+ 1

]−1

(5)

which increases from 0 at the planet location (d = 0) to 1 out-
side d ≥ RH with a midpoint fb = 1/2 at d = bRH, i.e. the
quantity b denotes the torque-cutoff radius in units of the Hill
radius. This torque-cutoff is necessary to avoid large, probably
noisy contributions from the inner parts of the Roche lobe and

to disregard material that is possibly gravitationally bound to the
planet (Crida et al. 2009). Here we assume b = 0.8, as a change
in b did not influence the results significantly (Kley et al. 2009).

If a small disturbing force dF (given per unit mass) due to
the disc is acting on the planet, the planet changes its orbit. This
small disturbing force dF may change the planetary orbit in size
(semi-major axis a), eccentricity e, and inclination i. The incli-
nation i gives the angle between the orbital plane and an arbitrary
fixed plane, which is in our case the equatorial plane (θ = 90◦),
which corresponds to the midplane of the disc. Only forces ly-
ing in the orbit plane can change the orbit’s size and shape, while
these forces cannot change the orientation of the orbital plane. In
Burns (1976) the specific disturbing force is written as

dF = R + T + N = ReR + TeT + NeN, (6)

where each e represents the relevant orthogonal component of
the unit vector. The perturbing force can be split into these com-
ponents: R is radially outwards along r; T is transverse to the
radial vector in the orbit plane (positive in the direction of mo-
tion of the planet); and N is normal to the orbit planet in the
direction R × T.

Burns (1976) finds for the change of inclination

di
dt
=

aN cos ξ
H

, (7)

where the numerator is the component of the torque which ro-
tates the specific angular momentum H = r× ṙ about the line of
nodes (and which thereby changes the inclination of the orbital
plane). The specific angular momentum H is defined as

H =
√

GM�ap(1 − e2). (8)

The angle ξ is related to the true anomaly f by f = ξ − ω,
with ω being the argument of periapsis and ξ describes the angle
between the line of nodes and the planet on its orbit around the
star. For the case of circular orbits, the argument of periapsis ω
is zero.

The change of eccentricity is given by Burns (1976) as

de
dt
=

[
a(1 − e2)

GM�

]1/2 [
R sin f + T (cos f + cos ε)

]
, (9)

where ε is the eccentric anomaly, which is given by

cos ε =
e + cos f

1 + e cos f
· (10)

With this set of equations, we are able to calculate the forces
acting on planets on fixed orbits and determine di/dt and de/dt.

3. Planets on inclined and eccentric orbits

In this section we investigate the changes of the planetary orbit
due to planet-disc interactions. The planets are put in fixed orbits
with inclinations ranging from i0 = 1.0◦ to i0 = 75◦, with a total
of ten different inclinations. For each inclination we also adopt
three different eccentricities, which are e0 = 0.0, e0 = 0.2 and
e0 = 0.4.

We note that the orbit of highly inclined planets is not em-
bedded completely in the hydrodynamical grid, since the grid is
only extended up to 7◦ above and below midplane. However, the
density distribution in the vertical direction follows a Gaussian
profile and for an aspect ratio of 0.05 we are at about 2.5σ at 7◦
so that the contribution of the gas can be neglected at larger θ.
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Fig. 1. Surface density for disc simulations with 10 MJup planets in cir-
cular and eccentric orbits with different inclinations. The surface den-
sity is plotted after 400 planetary orbits. The evolution has reached an
equilibrium state, meaning that the surface density does not change in
time any more.

3.1. Gaps in discs

The criterion for gap opening depends on the viscosity, the pres-
sure, and the planetary mass (Crida et al. 2006). Giant planets
(M � 0.5 MJup) are generally massive enough to split the disc.
However, the inclination of a giant planet plays a very important
role in opening a gap as well, as can be seen in Fig. 1, where
we display the surface density profile of discs with embedded
10 MJup planets on different inclinations.

Clearly, a lower inclination produces a much wider and
deeper gap inside the disc. For larger inclinations, the gap open-
ing is reduced, as the planet spends less and less time inside the
disc to push material away from its orbit. Additionally, eccentric
planets open up gaps that are less deep than their circular counter
parts. This effect is very important for the damping of inclina-
tion and eccentricity, as an open gap inside the disc prolongs the
damping time-scale of inclination (Bitsch & Kley 2011) and of
eccentricity (Bitsch & Kley 2010). Gap opening also indicates
that linear analysis of the situation is no longer applicable.

In Fig. 2 we present slices in the x − z-plane for the disc’s
density for 10 MJup planets on inclinations of 1◦, 20◦, and
75◦ degrees. The inclinations correspond to those shown in the
surface density plot (Fig. 1). Clearly the depth of the gap shown
in the surface density is reflected in the 2D plots. Additionally,
the density structures show no effects at the upper and lower
boundaries because of boundary conditions, indicating that an
opening angle of 7◦ is sufficient for our simulations.

3.2. Change of the disc structure

It has been known since several years that massive planets are
able not only to open up a gap in the disc, but are also able
to change the shape of the whole disc by turning it eccentric
(Papaloizou et al. 2001; Kley & Dirksen 2006). Additionally,
the inclination of the disc will change due to the interactions
with the inclined planet. In this section, we discuss the impact of
a massive planet on the eccentricity and inclination of the disc.

In Fig. 3 we display the eccentricity (top) and inclination
(bottom) of the disc interacting with a 10 MJup planet with differ-
ent inclinations (1◦ and 75◦) and eccentricities. The calculations
for deriving the eccentricity and inclination of the disc can be
found in Appendix B.
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Fig. 2. Density (in g/cm3) of a r − θ-slice through the disc at the az-
imuth of an embedded 10 MJup planet on a fixed circular inclined orbit
with i0 = 1.0◦ (top), i0 = 20◦ (middle), and i0 = 75.0◦ (bottom). The
planet is at its lowest point in orbit (lower culmination) at the time of
the snapshot, which was taken after 400 planetary orbits. We note the
slightly different colour scale for each plot. The black line indicates the
midplane of the grid to which the inclination of the disc is measured
(see Sect. 3.2).

For low planetary inclinations, the influence of the planet
on the eccentricity of the protoplanetary disc is greater than on
high planetary inclinations, simply, because the planet is closer
to midplane and can therefore influence the eccentricity of the
disc more strongly by pushing the material away. The eccentric-
ity increase of the disc is stronger for planets in circular orbits
than for planets that are already in an eccentric orbit. For highly
inclined planets, the situation is reversed. The disc is most eccen-
tric for planets that are already in an eccentric orbit and the disc
is less eccentric for planets in circular orbits. Additionally, the
eccentricity of the disc is highest close to the planet and drops
with distance from the planet, independent of the inclination of
the planet.

The inclination of the disc for the i0 = 1◦ planets is greater
mostly around the planet’s location (at r = 1.0aJup) because the
influence of the planet is strongest there. The inclination of the
disc can be larger than the inclination of the planet. This is pos-
sible because the planet opens a gap inside the disc and pushes
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Fig. 3. Eccentricity (top) and inclination (bottom) of the disc with a
10 MJup planet influencing the disc structure after 400 planetary orbits.

the material away from the planet (Fig. 1, top), which can also
be seen in the 2D density configuration (top of Fig. 2). In the
outer parts of the disc the disc remains non-inclined.

For planets with high inclinations the situation is slightly dif-
ferent than for planets with low inclinations. The maximum of
inclination is lower and there is no distinct maximum of inclina-
tion visible inside the planetary orbit (r < 1.0aJup) compared to
the case of low inclinations. However, the outer parts of the disc
show a non-zero inclination (which has a tendency to be larger
for larger planetary eccentricities), which was not visible for the
low-inclination planets. Additionally, they show a small peak of
inclination at r ≈ 1.25aJup.

3.3. Change of orbital parameters

3.3.1. Eccentricity

As stated in Sect. 2.3, the forces acting on a planet on a fixed
orbit can be calculated and then used to determine a rate of
change for the inclination and eccentricity. The damping rates
are taken when the planet-disc interactions are in an equilibrium
state and do not change on average any more. The damping given
by Eq. (7) varies strongly within the time of an orbit and slightly
from one orbit to an other. Thus, we averaged it over 40 plane-
tary orbits.

In Fig. 4 we present the change of eccentricity de/dt for plan-
ets of 1 MJup, 5 MJup, and 10 MJup on orbits with different incli-
nations and eccentricities. The change of de/dt has been studied
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Fig. 4. Change of eccentricity de/dt for planets with 1 MJup, 5 MJup, and
10 MJup with different eccentricities. Points are results from numerical
simulations, while lines indicate the fitting of the data. The 1 MJup plan-
ets have been evolved for 200 planetary orbits, the 5 MJup and 10 MJup

planets have been evolved for 400 orbits. The forces used to calcu-
late the data points have been averaged over 40 planetary orbits for all
simulations.

in the past for coplanar low-mass planets (Cresswell et al. 2007;
Bitsch & Kley 2010) and for high-mass planets (Papaloizou et al.
2001; Kley & Dirksen 2006).

For low inclinations (i0 < 10◦) the damping of eccentric-
ity is stronger than for larger inclinations in the case of 1 MJup.
The maximum damping rate is also dependent on the initial ec-
centricity e0, where a larger e0 provides a faster damping. The
damping of eccentricity is reduced significantly for larger incli-
nations i0 > 20◦. As soon as the planet is no longer embedded
in the disc, the damping reduces, as it is most efficient when the
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planet is inside the disc and not high above or below the disc for
most of its orbit.

For low inclinations (i0 < 10◦) and low eccentricities (e0 <
0.2), the 5 MJup planet opens up a large gap inside the disc. As
the planet opens a gap inside the disc the damping is reduced be-
cause there is less material close to the planet to damp its orbit.
For large initial eccentricities (e0 = 0.4), an increase of eccen-
tricity is observable for low planetary inclinations. But for higher
inclinations, the damping of eccentricity increases as well, be-
cause the planet does not open up such a deep gap (Fig. 1).
However, for i0 > 40◦ the damping of eccentricity becomes
smaller again, because the planet spends less and less time in the
midplane of the disc where most of the disc material is, which is
responsible for damping.

For even higher masses (10 MJup), we observe an eccentric-
ity increase for low planetary inclinations for all non-zero eccen-
tricities. But for larger inclinations (i0 > 15◦), the eccentricity is
damped again. The largest value of damping is at i0 ≈ 30◦−50◦,
depending on the planet’s eccentricity and is then reduced for
higher inclinations again, following the trend described for the
5 MJup planet.

For large planets with low inclinations, the eccentricity of
the planet can rise, which has been observed in Papaloizou et al.
(2001) and Kley & Dirksen (2006). Papaloizou et al. (2001)
stated that if the planet opens up a large gap, the m = 2 spi-
ral wave at the 1:3 outer eccentric Lindblad resonance becomes
dominant (because the order 1 resonances lie inside the gap) and
induces eccentricity growth. However, they found an eccentricity
increase only for MP > 20 MJup, while our simulations indicate
it clearly already for MP > 5 MJup (Fig. 4, bottom). The differ-
ences between their 2D simulations and our 3D simulations can
be the cause of the change in the required planetary mass for
eccentricity growth.

Additionally, by embedding a high-mass planet inside a disc,
the disc can become eccentric, as shown in Sect. 3.2. The disc’s
eccentricity is dependent on the planet’s inclination and slightly
dependent on its eccentricity as well (see Fig. 3).

It seems that the coupling between a large disc eccentricity
at r ≈ 1−1.5aP and a large planetary eccentricity (the i0 = 1◦
with e = 0.4 case) results in a large force on the planet. This ef-
fect is increased as the planet in an eccentric orbit opens a small
gap leaving more material at that location. This leads then to a
greater increase of eccentricity for highly eccentric planets, com-
pared to those with small eccentricity.

3.3.2. Inclination

In Fig. 5 we present the rate of change of inclination di/dt, pre-
sented in degrees per orbit, for planets with different masses and
different eccentricities. For 1 MJup the inclination is damped for
all initial inclinations. For increasing inclinations with i0 < 15◦
(smaller for increasing eccentricity), the damping of inclination
increases. This increase is nearly linear, as has been shown for
low-mass planets in theory (Tanaka & Ward 2004) and in numer-
ical simulations (Cresswell et al. 2007; Bitsch & Kley 2011).
The rates of inclination damping for zero-eccentricity planets
are comparable to those stated in Xiang-Gruess & Papaloizou
(2013).

For i0 > 15◦, the damping rate of the inclination is a decreas-
ing function of inclination ; this is consistent with the planet-disc
interaction being weaker when the planet spends more time far-
ther from the midplane.

For 5 MJup the damping of inclination is almost the same as
for the 1 MJup planet, but with a maximum at i0 ≈ 20◦. However,
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Fig. 5. Change of inclination di/dt for planets with 1 MJup, 5 MJup, and
10 MJup with different eccentricities. di/dt is in degrees per orbit at the
planet’s location rP = 1.0aJup. Points are results from numerical simula-
tions, while lines indicate the fitting of the data. The 1 MJup planets have
been evolved for 200 planetary orbits, the 5 MJup and 10 MJup planets
have been evolved for 400 orbits. The forces used to calculate the data
points have been averaged over 40 planetary orbits for all simulations.

there is a significant difference for high inclined and low ec-
centric planets: the inclination is not damped if i0 > 50◦, but
it increases for e0 < 0.1. This behaviour will be discussed in
Sect. 3.4.

The 10 MJup planet shows the same general behaviour as the
5 MJup planet, but the inclination increase already sets in at i0 �
45◦, depending on e0. Still, no inclination increase is observed
in the high eccentricity simulations (e0 = 0.4). We also want
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to stress here that the damping rate significantly increases with
increasing planetary eccentricity for all planetary masses.

The increase of inclination for high-mass planets due to in-
teractions with the disc has been studied in Lubow & Ogilvie
(2001). They state that the 1:3 mean-motion resonance also
acts to increase inclination. This resonance is at rr = 2.08rP,
which clearly is not inside an open gap in the case of i0 = 75◦
(see Fig. 1). However, the resonances closer to the planet (1:2
and 2:3) are also not completely inside the gap, so that there
should be some damping effects, but the damping of inclination
through these resonances is weaker than the increase from the
1:3 resonance because in total the inclination increases for high
inclined planets (Fig. 5). Lubow & Ogilvie (2001) also used
small i0 for their calculations in order to apply linear theory,
which does not apply for large inclinations. The situation for our
high inclination planets might therefore be completely different
from their calculations.

3.4. Moving planets in discs

3.4.1. Short-term evolution

In order to verify the results of inclination and eccentricity
change, we present in this section simulations of planets evolv-
ing freely in the disc. The planets are moving because of the
influences of the discs forces. We present here several interest-
ing cases for planets with high inclinations. The first case is for
5 MJup and 10 MJup with an inclination of i0 = 40◦ and i0 = 75◦
in circular orbits with an evolution time of 80 planetary orbits.
In Fig. 6 the evolution of inclination with time is presented for
the two different planets and inclinations. The evolution is nearly
identical, as was predicted by the measured forces for the plan-
ets on fixed orbits, which is shown by the solid lines (rates from
Fig. 5).

One should be aware, however, that by keeping the planet
in a fixed orbit, angular momentum in the system is not con-
served because, for example, the inclination of the disc is ris-
ing (see Fig. 3) while the planet remains in a fixed orbit. The
effect of conserving angular momentum is not a problem for
low-mass planets, where the measured forces match perfectly
with the inclination damping rates for moving planets (Bitsch &
Kley 2011), but for big planets of several Jupiter masses this can
lead to small differences because the angular momentum transfer
from disc to planet and vice-versa is much larger.

3.4.2. Long-term evolution

The long-term evolution of planets with different inclinations
and eccentricities is displayed in Fig. 7. At the beginning of
the evolution, the change of inclination and eccentricity matches
those presented in Figs. 4 and 5 for planets in fixed orbits.
However, the evolution after the initial orbits is quite different
from what was expected by the previous simulations.

In the 10 MJup, e0 = 0.0, i0 = 75◦ case, the inclination ini-
tially increases slightly with a rate that corresponds to the pre-
dicted rate (see also Fig. 6). At the same time, the eccentric-
ity of the planet increases and after about 250 orbits it reaches
e ≈ 0.25. This eccentricity corresponds to inclination damping
(Fig. 5), which is what happens in the evolution of the planet: the
inclination drops. However, the eccentricity still increases at the
same time, which was not predicted by the analysis of planets in
fixed orbits (Fig. 4). The eccentricity then rises until a peak of
e ≈ 0.9, where it starts to drop again. At the same time, the incli-
nation decrease stops and the inclination starts to rise again. As
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Fig. 6. Evolution of inclination of 5 MJup and 10 MJup planets with an
initial inclination of i0 = 40.0◦ (top) and i0 = 75.0◦ (bottom) in circular
orbits. The simulations have been restarted with a moving planet after
the disc was evolved for a fixed planet for 400 planetary orbits. The time
index has been reset to zero and the lines correspond to the expected
damping rates from Fig. 5.

soon as the eccentricity has dropped to e ≈ 0.4, the inclination
starts to decrease again.

This exchange of inclination and eccentricity is represen-
tative of the Kozai mechanism, introduced initially to describe
the evolution of a highly inclined asteroid perturbed by Jupiter
(Lidov 1962; Kozai 1962). A similar Kozai mechanism affects
the orbits of highly inclined planets with respect to a disc
(Terquem & Ajmia 2010; Teyssandier et al. 2013). For inclina-
tions above a critical value, the gravitational force exerted by the
disc on the planet produces Kozai cycles where the eccentricity
of the planet can be pumped to high values, in antiphase with its
inclination. We note that the Kozai mechanism is visible in the
given computation time because of the high mass values consid-
ered in our study (5 and 10 MJup), comparable to the total mass of
the disc (0.01M�). Indeed high masses induce faster dynamical
evolution.

When the planet starts at a larger initial eccentricity (e0 = 0.2
or e0 = 0.4), the general behaviour is similar as can be seen in
Fig. 7, but the first Kozai cycle occurs earlier. Circular orbits at
high inclination constitute an unstable equilibrium of the secu-
lar dynamics, so the evolution at zero initial eccentricity remains
for a while close to the separatrix associated with the equilib-
rium (Libert & Henrard 2007). The Kozai effect does not act for
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Fig. 7. Long-term evolution of planets with different inclinations, ec-
centricities, and masses in discs. The simulations are started from the
equilibrium structures with fixed planets, where the planets are then re-
leased and allowed to move freely inside the disc. The top plot features
the inclination of the planets, while the bottom plot shows the eccen-
tricity of the planets. In the beginning the changes of eccentricity and
inclination match the ones displayed in Figs. 4 and 5.

initial inclinations smaller than a critical value (i0 < 40◦ in the
restricted problem of Kozai 1962). We therefore also display a
planet with i0 = 40◦, and show that the eccentricity and inclina-
tion oscillations are significantly reduced.

Even if eccentricity can be pumped to high values, the Kozai
mechanism only postpones the alignment with the disc and the
circularization of the orbit induced by damping forces of the disc
on the planet (given in Figs. 4 and 5). As clearly shown by the
evolution of the planet with e0 = 0.2, Kozai cycles repeat with
reduced intensity. The drop of inclination is much larger than
the raise of inclination, after the eccentricity increase/decrease
cycle. These results are in agreement with Teyssandier et al.
(2013), showing that low-mass planets would remain on in-
clined and eccentric orbits over the disc lifetime, while higher
mass planets would align and circularize. We also illustrate in
Fig. 7 the influence of the planet mass by considering a planet of
5 MJup(e = 0.0): the eccentricity value reached during the sec-
ond cycle of inclination increase (at 450 orbits) is higher for the
5 MJup planet, as expected.

The effect of Kozai oscillations between a disc and planet
was also stated in Xiang-Gruess & Papaloizou (2013) however,
Xiang-Gruess & Papaloizou (2013) were not able to resolve

a full Kozai cycle, probably because their mass-ratio between
planet and disc is smaller than in our case. This shows that for
i0 > 40◦, the measure of the forces on a planet on a fixed or-
bit is not relevant. In this case, damped Kozai oscillations will
govern the long-term evolution of the orbital parameters. This
phenomenon can be of crucial importance for the study of the
fate of planets scattered on high-inclination orbits.

3.5. Fitting for e and i

In Figs. 5 and 4 we provided the change of di/dt and de/dt for
different planetary masses. In these plots, lines indicate a fit for
these data points. We now present the fitting formulae, which
depend on the planet mass MP, the eccentricity eP, and inclina-
tion iP. The inclination iP used in the presented formulae is given
in degrees, as is the resulting di/dt. As discussed in the previous
section, these formulae are only relevant for i0 < 40◦ where no
complex cycles are observed. Therefore, in fitting our parame-
ters we have ignored the data points corresponding to high incli-
nations, in particular the ones showing inclination increase. This
applies to the fitting of inclination and eccentricity.

As can be seen in the figures, the results of the numerical
simulations are all but smooth. Therefore, one should not expect
the fit to be very accurate with simple functions. However, our
goal is to catch the big picture, and to provide an acceptable
order of magnitude of the effect of the disc on the inclination
and eccentricity. In log scale, the data appear relatively close
to an increasing power law of iP for small iP, and a decreasing
power law of iP for large iP. Therefore, we base our fits on the
general form for the damping rates

F (iP) = − Mdisc

0.01 M�

(
ai−2b

P + ci−2d
P

)−1/2
, (11)

where b is positive and d is negative. This way, for small iP,
F (iP) ≈ ibP

(
Mdisc/0.01 M�

√
a
)
, and for large iP, F (iP) ≈

idP
(
Mdisc/0.01 M�

√
c
)
. The coefficients a, b, c, and d depend on

the planet mass and eccentricity, and are fitted to the data as fol-
lows. The damping rate also has to be linear dependent on the
disc mass Mdisc/M�, as our simulations linearly scale with the
gas density.

3.5.1. Eccentricity

We do not want (de/dt) to tend to zero when iP tends to zero.
A pure increasing power law of iP is inappropriate here. The
damping function will be given by

Fe(iP) = − Mdisc

0.01 M�

(
a(iP + iD)−2b + ci−2d

P

)−1/2
, (12)

where iD is a small inclination so that for iP ≈ 0, de/dt ≈
− Mdisc

0.01 M�

ibD√
a
. We are using iD = M̃p/3 degrees in Eq. (12), where

M̃p = 1000 Mp/M� is the planet mass in Jupiter masses. For
small eccentricities, it is expected that eP/(de/dt) = τe is con-
stant. This makes the coefficient a proportional to e−2

P . We find
that de/dt is well fitted by the above general form using the
coefficients

ae(MP, eP) = 80 e−2
P exp

(
−e2

PM̃p/0.26
)

15M̃p
(
20 + 11M̃p − M̃2

p

)
be(MP) = 0.3M̃p

ce(MP) = 450 + 2M̃p

de(MP) = −1.4 +
√

M̃p/6. (13)
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The second degree polynomial function of M̃p in the expression
of a is just a refinement, its value being between 30 and 50 for
1 < M̃p < 10. We note, however, that it is negative for M̃p > 12
so this expression only applies for M̃p < 11, but this covers the
range of giant planets. To describe the change of eccentricity
we add a second function Ge, which describes the eccentricity
increase for high-mass planets. The damping and excitation of eP
are two different mechanisms that add on the planet, and one
of them finally dominates, setting the sign of de/dt. The fits in
Fig. 4 are the added functions.

For Ge we use the result of Papaloizou et al. (2001) who cal-
culated the eccentricity excitation for i0 = 0◦ high mass-planets.
Our calculation is presented in Appendix C and gives

Ge|i=0 = 12.65
MPMdisc

M2
�

eP. (14)

Then, we find that this excitation decreases with i as a Gaussian
function, finally making

Ge(iP,MP, eP) = 12.65
MPMdisc

M2
�

eP exp

⎛⎜⎜⎜⎜⎜⎝−
(

(iP/1◦)
M̃p

)2⎞⎟⎟⎟⎟⎟⎠ · (15)

In principle planets with MP < 5 MJup and e < 0.3 do not
show any signs of eccentricity increase and the Gaussian func-
tion should not be added in that case. However, the function is
designed to scale with the planetary mass, so that lower mass
planets are not affected by it. The change of eccentricity is then
given by the sum of Fe and Ge.

3.5.2. Inclination

In the case of inclination damping data, we notice that the de-
creasing power law dominates actually before the intersection
with the increasing power law; thus, we multiply the term ai−2b

P
in our general formula by a Gaussian function of iP centred
on 0◦, so that this term is not affected for small iP but van-
ishes more quickly than is natural. It allows our fitting formula
to catch the peak of damping in inclination observed around 5 to
20 degrees in Fig. 5. For small iP, di/dt should be close to lin-
ear in iP, so the coefficient b should be close to 1. The damping
function for inclination Fi is then given, in degrees per orbit, by

ai(MP, eP) = 1.5 × 104(2 − 3eP)M̃3
p

bi(MP, eP) = 1 + M̃pe2
P/10

ci(MP, eP) = 1.2 × 106/
[
(2 − 3eP)

(
5 + e2

P

(
M̃p + 2

)3
)]

di(eP) = −3 + 2eP

gi(MP, eP) =
√

3M̃p/(eP + 0.001) × 1◦

Fi(MP, eP, iP) = − Mdisc

0.01 M�

[
ai

( iP
1◦

)−2bi

exp(−(iP/gi)2/2) (16)

+ ci

( iP
40◦

)−2di
]−1/2

·

We note that the expression for coefficient ci is clearly not valid
for e > 2/3.

From our formulae for de/dt and di/dt we can now estimate
how the eccentricity and inclination of a planet will evolve for
all eP and iP. In Fig. 8 the di/dt for different inclinations and
eccentricities for 5 MJup and 10 MJup according to the formulae is
presented. In Fig. 9 the de/dt for the same two planetary masses
is plotted.
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Fig. 8. Top: di/dt for a 5 MJup planet with different eccentricities and
inclinations. The values of di/dt have been determined with the formula
given in Sect. 3.5. Bottom: same, but for 10 MJup. We note the different
colour coding as the change is dependent on the planetary mass.

Figure 8 clearly indicates that the damping rate of inclination
is highest for planets with a large eccentricity that are moderately
inclined above the midplane (iP ≈ 15◦). The inclination damping
rate indicates that planets that are scattered during the gas disc
phase in orbits with moderate inclination (iP < 40◦), would lose
their inclination well within the gas dispersal of the disc.

As already indicated in Fig. 4, the eccentricity is always
damped for high inclinations. For high planetary masses, the
eccentricity of the planet can increase for low planetary incli-
nations because of interactions with disc. We find an eccen-
tricity increase for both high-mass cases, but the increase of
eccentricity declines with increasing eccentricity and inclina-
tion. Additionally, the threshold of eP and iP for which eccen-
tricity can increase is larger for higher mass planets, which is
indicated by the white line in Fig. 9 that represents the transition
from eccentricity increase to decrease. Below the line eccentric-
ity increases, above the line eccentricity decreases.

4. Application to single-planet systems

The movement of a single planet in the disc can only be pre-
dicted if i < 40◦ and e < 0.65 as the planet would undergo a
Kozai-oscillation for larger i. Additionally, the fitting formula
might not be totally accurate for e > 0.5, since our simulations
only cover an eccentricity space of up to e = 0.4. In Fig. 10 the
trajectory of the 10 MJup planet with i0 = 75◦ and e0 = 0.4,
which was shown in Fig. 7 is displayed. This illustrates that
the movement of the planet is a complex process as long as the
Kozai-oscillations are still operational, but as soon as i < 40◦, the
planet loses inclination, which is then not converted back into ec-
centricity. The planet is damped towards midplane on a non-zero
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Fig. 9. Top: de/dt for a 5 MJup planet with different eccentricities and in-
clinations. The values of de/dt have been determined with the formula
given in Sect. 3.5. Bottom: same, but for 10 MJup. The white line in the
figure indicates the transition between eccentricity increase and eccen-
tricity damping. Below the white line, the eccentricity increases, above
the line eccentricity decreases. We note the different colour coding as
the change is dependent on the planetary mass.

eccentricity. This non-zero eccentricity will actually hold in this
case (see Sect. 3.3.1).

A typical damping rate of de/dt = 0.001/orbit would sug-
gest that the planet will lose ≈0.085 in eccentricity in the period
of 104 years. A typical damping rate of di/dt = 0.01 deg/orbit in-
dicates that the planet will lose ≈8.5◦ of inclination in 104 years.

The important parameters for the evolution of the orbit
of a planet are the damping timescales τe = e/(de/dt) and
τi = i/(di/dt). We find that e/Fe is much smaller than i/Fi
for i > 10−20◦, depending on the planet mass and eccentric-
ity. Thus, planets scattered on highly inclined orbits will follow
a certain pattern. While the inclination is damped slowly and still
high, the eccentricity is damped to zero. After the inclination is
damped further, the eccentricity of the planet can rise because of
interactions with the disc (if e is below the white line in Fig. 10).
Finally the inclination is damped to zero and the planet remains
with a non-zero eccentricity. This is illustrated by the blue lines
in Fig. 10 that correspond to calculated trajectories of 10 MJup
planets.

Nevertheless, this suggests that at the time of the disc disper-
sal, the favoured endstate for the planet’s evolution is an eccen-
tric orbit in midplane of the disc. This implies that the scattering
process of inclined planets must have taken place after the gas is
depleted or gone.

5. Summary

We have presented the evolution of eccentricity e and inclina-
tion i of high-mass planets (MP ≥ 1 MJup) in isothermal pro-
toplanetary discs. The planets have been kept on fixed orbits
around the host star, and the forces from the disc acting onto
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Fig. 10. Evolution of e and i of the 10 MJup planet (shown in Fig. 7)
with i0 = 75◦ and e0 = 0.4 in the e-i plane (black line). The background
is the extended formula of the fit for de/dt and the white line marks
the transition between eccentricity increase and damping as in Fig. 8.
The blue lines indicate calculated trajectories of 10 MJup planets from
the fitting formulae.

the planet have been calculated. By using these forces, a change
of de/dt and di/dt has been determined.

Inclination and eccentricity are in general damped by the in-
teractions with the disc. For 1 MJup the damping rate of e and i
is highest for only very small inclinations (i0 ≈ 3◦), while the
maximal damping rate is shifted to larger inclinations for more
massive planets. As the more massive planets carve deeper gaps
inside the disc, the damping interactions with the disc are re-
duced. But for larger inclinations, the planet can feel the full
damping potential of the disc and is therefore damped in e and i
at a faster rate.

There are two exceptions. The first is for low-inclination
planets with a sufficient mass (MP > 4−5 MJup). In this case,
the interactions of the planet with the disc result in an increase
of eccentricity of the planet, which has already been observed
and studied (Papaloizou et al. 2001; Kley & Dirksen 2006).
However, our 3D results predict an increase of eccentricity for
lower planetary masses than the previous studies.

The second exception arises for massive planets (MP ≈
Mdisc, in our case for MP > 5 MJup) on high initial inclinations
(i0 > 40◦). In the long-term evolution of the planet, eccentricity
can increase, while inclination is damped and vice-versa. The
planet undergoes a Kozai-cycle with the disc, but in time the os-
cillations of the planet in e and i diminish, as e and i get damped
by the disc at the same time. The planet will end up in midplane
through the interactions with the disc.

In Sect. 3.5 we provided formulae for di/dt and de/dt for
high-mass planets, which we fitted to the numerical hydrody-
namical simulations. The formulae can now be used to calcu-
late the long-term evolution of planetary systems during the
gas phase of the disc with N-Body codes. However, we recom-
mend not using the fitting formula, if the planetary eccentricity
is e > 0.65 and if i > 40◦ (because of the Kozai interactions, a
fit that can be used for the long-term evolution of planets is hard
to predict).

In the end, the planet’s inclination will be damped to zero.
Low-mass planets (MP < 4−5 MJup) will end up in circular orbits
in the midplane of the disc, while higher mass planets (MP >
5 MJup) will pump their eccentricity to larger values because of
interactions with the disc. This implies that the scattering process
of inclined planets must have taken place after the gas is well
depleted.

The influence of the gaseous protoplanetary disc on the in-
clination is also of crucial importance, if multiple planets are
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present in the disc that excite each other’s inclination during their
migration (Libert & Tsiganis 2009, 2011a). The influence of the
disc on the long-term evolution of multi-body systems will be
studied in a future paper.
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Appendix A: Additional information on numerics

In principle, a fast vertical movement (more than one grid cell
per timestep) through the grid could cause problems with the
Fargo algorithm, as Fargo shifts the grid cells for several cells
azimuthally and the effects of the planet on the gas might get
corrupted. In Fig. A.1 we present the evolution of the normal
component of the disturbing force FN (which has been averaged
over one orbit) of planets with i = 75◦ on circular orbits. The
two simulations shown feature different time-step lengths. For
the simulation with larger timestep, the planet moves through
about one vertical grid cell in each time step. For the shorter
timestep, three timesteps are needed to cover the vertical extent
of one grid cell. The evolution of FN seems to be identical, indi-
cating that the length of the timestep is not of crucial importance
here also because we use a rotating frame so that the planet is
on a fixed position inside the numerical grid where the Fargo
algorithm does not shift grid cells for r ≈ aP.

The smoothing of the planetary potential is crucial for avoid-
ing singularities at the planet’s location. In Sect. 2.1 the numeri-
cal potential for the planets was introduced. Of crucial impor-
tance here is the smoothing length rsm. A smaller smoothing
length rsm leads to a deeper planetary potential. This in turn leads
to a larger accumulation of mass at the planet’s location, but this
increase in density near the planet can be very high for large
planets, especially in the isothermal case. This increase of den-
sity near the planet is unphysical, as normally the temperature
and pressure gradients should stop the accumulation of gas at
some point, which is not possible in the isothermal case. In this
situation, the density can become so large that the gradients of
density near the planet become too steep and the timestep inside
the code collapses down to very small values, which makes an
integration over several orbits impossible. We therefore return to
the ε-potential for the 10 MJup planet.

In Fig. A.2 we present the inclination damping for 5 MJup
planets in circular orbits for two different smoothing lengths,
rsm = 0.8 and rsm = 0.5. Changing the planetary potential seems
to influence the damping of inclination by up to ±15%, but the
general trend is the same. Even with a deeper planetary poten-
tial, the inclination of a planet seems to increase for large initial
inclinations. The main difference seems to be that no inclination
increase can be observed for the i0 = 55◦ case with a smoothing
length of rsm = 0.5. This has also been observed for the 10 MJup
planet where the difference between the depth of the two po-
tentials is supposed to be stronger (as we change from the ε to
the cubic potential), but the trend is the same as for the 5 MJup
planet. For i0 = 75◦ the inclination seems to increase for models
of planets in fixed orbits for both 5 MJup and 10 MJup. We there-
fore conclude that the general trend is conserved regardless of
the chosen planetary potential and smoothing length.
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In order to find the sufficient numerical resolution for our
simulations of inclination damping, we have performed several
resolution tests. In Fig. A.3 we present the results of these tests.
The plotted quantity FN has been averaged over one running or-
bit. Keep in mind that FN has been averaged over 40 orbits to
determine the change of inclination in the end. The simulations
feature a 10 MJup planet with i = 3◦, so it is well embedded inside
the disc. The numerical resolution of the grid has been changed
from 260×32×384 to 390×48×576. As the crucial force FN for
inclination damping gives the same results for both resolutions,
we use the lower resolution for our simulation with confidence.

Appendix B: Eccentricity and inclination of the disc

To determine the eccentricity and inclination of the disc, we take
a mass-weighted average of the eccentricity of all grid cells. To
compute the eccentricity we take the specific total energy (in
mass units)

Etot,spec. = −GM�
r
+

1
2
u2, (B.1)

where u is the velocity vector of a given grid cell and r =√
x2 + y2 + z2 the radial component towards the grid cell. The

total energy is given by

Etot = −GM�
2a
, (B.2)

where a is the semi-major axis towards the grid cell. With that,
we can compute a

− GM�
r
+

1
2
u2 = −GM�

2a

⇒ a = −GM�
2

/ (
1
2
u2 − GM�

r

)
· (B.3)

With a we can now compute the eccentricity e of each grid cell:

Lspec. =
√

GM�a(1 − e2) ⇒ e =

√
1 − L2

spec.

GM�a
, (B.4)

where Lspec. = r × u is the specific angular momentum of each
grid cell. To get an estimate of the eccentricity of the disc, we
make a mass-weighted average of the eccentricity of each grid
cell (averaged in azimuthal and polar coordinates) in order to
get edisc(r):

edisc(r) =
Σmθφeθφ
Σmθφ

, (B.5)

where mθφ is the mass of the grid cell.
Because we use spherical coordinates r, θ, φ for the inclina-

tion, we have to transform Lspec. first into Cartesian coordinates
in order to calculate the mass average. This has to be done be-
cause each product L = r × u is given in a different local coordi-
nate system of each grid cell, but for the average the angular mo-
mentum vectors should always be in the same coordinate frame.
The angular momentum vector is given in the two coordinate
systems by

L = Lrur + Lθuθ + Lφuφ
L = Lxux + Lyuy + Lzuz, (B.6)

where

ur = sin θ cosφux + sin θ sin φuy + cos θuz

uθ = cos θ cosφux + cos θ sin φuy − sin θuz

uφ = − sinφux + cos θuy, (B.7)

with the angles θ and φ of the grid cell, which differ for each grid
cell. This gives us for L in Cartesian coordinates

L = (cos θ cosφLθ − sin φLφ)ux

+(cos θ sin φLθ + cosφLφ)uy − sin θLθuz. (B.8)

For the inclination of the disc we now take a mass-averaged
specific angular momentum (averaged in polar and azimuthal
direction)

Lav.(r) =
ΣLspec.,cmc

Σmc
, (B.9)

where the subscript c denotes the grid cell number, and mc the
corresponding mass of the grid cell. Now we can compute the
angle between Lav. and the z-axis, which gives us the averaged
inclination at each ring of the disc.

Appendix C: Increase of eccentricity

We follow Papaloizou et al. (2001) to calculate the maximum
value of eccentricity increase for high-mass planets, as it is given
by Ag in Eq. (15). In Papaloizou et al. (2001) the increase of
eccentricity is calculated through the growth rates of the modes
of the Lindblad resonance, which is given by

γ =
1

4J
dJ
dt
, (C.1)

where

J = −1
2

MPe2
P

√
(GM�)rP − 1

2

∫
Σe2

dr3Ω drdφ, (C.2)

where ed is the disc’s eccentricity and rP the planetary distance
to star. The integral basically gives the disc mass, which is com-
parable to the planet’s mass, but as ed is much smaller than eP
(see Fig. 3), the term concerning the disc eccentricity is much
smaller than the term concerning the planetary eccentricity. We
therefore choose to neglect it in our estimate of the eccentricity
increase. We then get

dJ
dt
= −MPėPeP

√
(GM�)rP, (C.3)

which leads to

γ =
−MPėPeP

√
(GM�)rP

−4( 1
2 MPe2

P

√
(GM�)rP)

=
1ėP

2eP
· (C.4)

As also
γ

ω
=

MdiscMP

M2
�

(rP

r

)8

×
9π

[
(rēd − 2r

3
dēd

dr ) r
rP
− 21

4 eP

(
1 + 5

7 (rP/r)2
)]2

e2
P +

∫
2πΣe2

dr3Ωdr/
(
MPωr2

P

) , (C.5)

where we set ed = 0.0 and ēd = 0.0 because we are only inter-
ested in a first order estimate of the eccentricity increase from

the disc. With ω =
√

GM�/r3
P we find for ėP = 2ePγ

ėP =
(
12.65MPMdisc/M

2
�

)
eP = Ge|i=0, (C.6)

which gives the increase of eccentricity for a planet orbiting in
the midplane of the disc, which fits quite well with the results of
our simulations (Fig. 4).
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