33 research outputs found

    Author correction: large enriched fragment targeted sequencing (LEFT-SEQ) applied to capture of Wolbachia genomes

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.Published versio

    <i>Wolbachia</i> springs eternal: symbiosis in Collembola is associated with host ecology

    Get PDF
    Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes. </jats:p

    Whence river blindness? The domestication of mammals and host-parasite co-evolution in the nematode genus Onchocerca

    Get PDF
    The genus Onchocerca includes 34 described species and represents one of the largest genera of the filarial nematodes within the family Onchocercidae. Representative members of this genus are mainly parasites of ungulates, with some exceptions such as Onchocerca lupi and Onchocerca volvulus, infecting carnivores and/or humans. For a long time, the evolutionary relationships amongst onchocercids remained poorly studied, as the systematics of this genus was impaired by the high morphological variability of species included in the taxon. Although some molecular phylogenies were developed, these studies were mainly focused on bovine Onchocerca spp. and O. volvulus, including assessments of Wolbachia endosymbionts. In the present study, we analysed 13 Onchocerca spp. from a larger host spectrum using a panel of seven different genes. Analysis of the coxI marker supports its usefulness for the identification of species within the genus. The evolutionary history of the genus has been herein revised by multi-gene phylogenies, presenting three strongly supported clades of Onchocerca spp. Analyses of co-evolutionary scenarios between Onchocerca and their vertebrate hosts underline the effect of domestication on Onchocerca speciation. Our study indicates that a host switch event occurred between Bovidae, Canidae and humans. Cophylogenetic analyses between Onchocerca and the endosymbiotic bacterium Wolbachia indicate the strongest co-evolutionary pattern ever registered within the filarial nematodes. Finally, this dataset indicates that the clade composed by O. lupi, Onchocerca gutturosa, Onchocerca lienalis, Onchocerca ochengi and O. volvulus derived from recent speciation

    Impact of intestinal parasites on microbiota and cobalamin gene sequences: A pilot study

    Get PDF
    Background: Approximately 30% of children worldwide are infected with gastrointestinal parasites. Depending on the species, parasites can disrupt intestinal bacterial microbiota affecting essential vitamin biosynthesis. Methods: Stool samples were collected from 37 asymptomatic children from a previous cross-sectional Argentinian study. A multi-parallel real-time quantitative PCR was implemented for Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba histolytica and Giardia duodenalis. In addition, whole-genome sequencing analysis was conducted for bacterial microbiota on all samples and analyzed using Livermore Metagenomic Analysis Toolkit and DIAMOND software. Separate analyses were carried out for uninfected, Giardia-only, Giardia + helminth co-infections, and helminth-only groups. Results: For Giardia-only infected children compared to uninfected children, DNA sequencing data showed a decrease in microbiota biodiversity that correlated with increasing Giardia burden and was statistically significant using Shannon's alpha diversity (Giardia-only > 1 fg/μl 2.346; non-infected group 3.253, P = 0.0317). An increase in diversity was observed for helminth-only infections with a decrease in diversity for Giardia + helminth co-infections (P = 0.00178). In Giardia-only infections, microbiome taxonomy changed from Firmicutes towards increasing proportions of Prevotella, with the degree of change related to the intensity of infection compared to uninfected (P = 0.0317). The abundance of Prevotella bacteria was decreased in the helminths-only group but increased for Giardia + helminth co-infections (P = 0.0262). Metagenomic analysis determined cobalamin synthesis was decreased in the Giardia > 1 fg/μl group compared to both the Giardia < 1 fg/μl and the uninfected group (P = 0.0369). Giardia + helminth group also had a decrease in cobalamin CbiM genes from helminth-only infections (P = 0.000754). Conclusion: The study results may provide evidence for an effect of parasitic infections enabling the permissive growth of anaerobic bacteria such as Prevotella, suggesting an altered capacity of vitamin B12 (cobalamin) biosynthesis and potential impact on growth and development in children.Fil: Mejia, Rojelio. Baylor College of Medicine; Estados Unidos. Universidad Nacional de Salta; ArgentinaFil: Damania, Ashish. Baylor College of Medicine; Estados UnidosFil: Jeun, Rebecca. Baylor College of Medicine; Estados UnidosFil: Bryan, Patricia E.. Baylor College of Medicine; Estados UnidosFil: Vargas, Paola. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Juarez, Marisa del Valle. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Cajal, Silvana Pamela. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Nasser, Julio Rubén. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Lefoulon, Emilie. New England Biolabs; Estados UnidosFil: Long, Courtney. New England Biolabs; Estados UnidosFil: Drake, Evan. New England Biolabs; Estados UnidosFil: Cimino, Rubén Oscar. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Slatko, Barton. New England Biolabs; Estados Unido

    Diminutive, degraded but dissimilar: <i>Wolbachia</i> genomes from filarial nematodes do not conform to a single paradigm.

    Get PDF
    Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single Wolbachia-filarial nematode pattern of co-evolution or symbiotic relationship

    Redescription of Cercopithifilaria rugosicauda (Böhm & Supperer, 1953) (Spirurida: Onchocercidae) of roe deer, with an emended diagnosis of the genus Cercopithifilaria and a genetic characterisation

    No full text
    International audienceNewly collected material of Cercopithifilaria rugosicauda from roe deer Capreolus capreolus was analysed and compared to descriptions of C. rugosicauda from Austria and Hungary. The present specimens were assigned to the genus Cercopithifilaria using both morphological and molecular analyses. Complementary morphological data on the males and microfilariae of C. rugosicauda were described. The main morphological characters of different species of Cercopithifilaria were outlined and an emended generic diagnosis proposed. A genetic characterisation based on the analyses of cox1 and 12S rDNA sequences was reported supporting that C. rugosicauda was included in the clade of the genus Cercopithifilaria distinctly from other congeneric species available. However, these molecular analyses did not solve the relationships between the species of Cercopithifilaria. These could be approached using morphological characters that might be representative of their evolutionary history. In addition, Wolbachia was not seen in C. rugosicauda, either by immunohistological or by molecular approaches

    Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts

    Get PDF
    International audienceWolbachia is an alpha-proteobacterial symbiont widely distributed in arthropods. Since the identification of Wolbachia in certain animal-parasitic nematodes (the Onchocercidae or filariae), the relationship between arthropod and nematode Wolbachia has attracted great interest. The obligate symbiosis in filariae, which renders infected species susceptible to antibiotic chemotherapy, was held to be distinct from the Wolbachia-arthropod relationship, typified by reproductive parasitism. While co-evolutionary signatures in Wolbachia-arthropod symbioses are generally weak, reflecting horizontal transmission events, strict co-evolution between filariae and Wolbachia has been reported previously. However, the absence of close outgroups for phylogenetic studies prevented the determination of which host group originally acquired Wolbachia. Here, we present the largest co-phylogenetic analysis of Wolbachia in filariae performed to date including: (i) a screening and an updated phylogeny of Wolbachia; (ii) a co-phylogenetic analysis; and (iii) a hypothesis on the acquisition of Wolbachia infection. First, our results show a general overestimation of Wolbachia occurrence and support the hypothesis of an ancestral absence of infection in the nematode phylum. The accuracy of supergroup J is also underlined. Second, although a global pattern of coevolution remains, the signal is derived predominantly from filarial clades associated with Wolbachia in supergroups C and J. In other filarial clades, harbouring Wolbachia supergroups D and F, horizontal acquisitions and secondary losses are common. Finally, our results suggest that supergroup C is the basal Wolbachia clade within the Ecdysozoa. This hypothesis on the origin of Wolbachia would change drastically our understanding of Wolbachia evolution

    Caractérisation morphologique et moléculaire d’Onchocerca fasciata (Nematoda, Onchocercidae) de dromadaires (Camelus dromedarius) en Iran

    No full text
    Skin nodules of Onchocerca fasciata Railliet and Henry, 1910 (Spirurida, Onchocercidae) are a common finding in dromedary camels, though with a minimal clinical impact. There is little information about the morphology, molecular make-up and pathological impact of this parasite. Onchocerca fasciata nodules (1.3-2.1 cm in diameter and 509-841 mg in weight) were detected on the neck region in 31.5% of dromedary camels examined in Kerman province, southeastern Iran. Of 38 isolated nodules, only 23 (60.5%) contained viable worms. Measurement and morphological analyses were performed on isolated female worms by light microscopy. The identification of O. fasciata specimens was confirmed by sequence analysis of two mitochondrial genes (12S rDNA and cox1), which showed 0.4% divergence from available O. fasciata sequences. In addition, a phylogeny of filarial nematodes was constructed, based on these two mitochondrial genes and five nuclear genes (18S rDNA, 28S rDNA, MyoHC, rbp1, hsp70); this indicated that O. fasciata belongs to clade ONC3 of Onchocercidae, with representatives of the genera Onchocerca and Dirofilaria. Within the genus Onchocerca, O. fasciata is grouped with bovine parasitic species and the human parasitic Onchocerca volvulus, which suggests an impact of domestication on the radiation of the genus. Data provided here on the distribution and morphology of O. fasciata contribute to the molecular identification and phylogenetic position of the species
    corecore