30 research outputs found

    <i>Wolbachia</i> springs eternal: symbiosis in Collembola is associated with host ecology

    Get PDF
    Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes. </jats:p

    Light-driven chloride transport kinetics of halorhodopsin

    Get PDF
    Despite growing interest in light-driven ion pumps for use in optogenetics, current estimates of their transport rates span two orders of magnitude due to challenges in measuring slow transport processes and determining protein concentration and/or orientation in membranes in vitro. In this study, we report, to our knowledge, the first direct quantitative measurement of light-driven Cl transport rates of the anion pump halorohodopsin from Natronomonas pharaonis (NpHR). We used light-interfaced voltage clamp measurements on NpHR-expressing oocytes to obtain a transport rate of 219 (± 98) Cl /protein/s for a photon flux of 630 photons/protein/s. The measurement is consistent with the literature-reported quantum efficiency of ∼30% for NpHR, i.e., 0.3 isomerizations per photon absorbed. To reconcile our measurements with an earlier-reported 20 ms rate-limiting step, or 35 turnovers/protein/s, we conducted, to our knowledge, novel consecutive single-turnover flash experiments that demonstrate that under continuous illumination, NpHR bypasses this step in the photocycle

    Palaeosymbiosis Revealed by Genomic Fossils of Wolbachia in a Strongyloidean Nematode

    Get PDF
    Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections

    The endosymbiont Wolbachia rebounds following antibiotic treatment.

    No full text
    Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound
    corecore