1,133 research outputs found

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur

    Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix

    Full text link
    We consider the correlation functions of eigenvalues of a unidimensional chain of large random hermitian matrices. An asymptotic expression of the orthogonal polynomials allows to find new results for the correlations of eigenvalues of different matrices of the chain. Eventually, we consider the limit of the infinite chain of matrices, which can be interpreted as a time dependent one-matrix model, and give the correlation functions of eigenvalues at different times.Comment: Tex-Harvmac, 27 pages, submitted to Journ. Phys.

    Langevin dynamics with dichotomous noise; direct simulation and applications

    Get PDF
    We consider the motion of a Brownian particle moving in a potential field and driven by dichotomous noise with exponential correlation. Traditionally, the analytic as well as the numerical treatments of the problem, in general, rely on Fokker-Planck description. We present a method for direct numerical simulation of dichotomous noise to solve the Langevin equation. The method is applied to calculate nonequilibrium fluctuation induced current in a symmetric periodic potential using asymmetric dichotomous noise and compared to Fokker-Planck-Master equation based algorithm for a range of parameter values. Our second application concerns the study of resonant activation over a fluctuating barrier.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Breakdown of universality in multi-cut matrix models

    Get PDF
    We solve the puzzle of the disagreement between orthogonal polynomials methods and mean field calculations for random NxN matrices with a disconnected eigenvalue support. We show that the difference does not stem from a Z2 symmetry breaking, but from the discreteness of the number of eigenvalues. This leads to additional terms (quasiperiodic in N) which must be added to the naive mean field expressions. Our result invalidates the existence of a smooth topological large N expansion and some postulated universality properties of correlators. We derive the large N expansion of the free energy for the general 2-cut case. From it we rederive by a direct and easy mean-field-like method the 2-point correlators and the asymptotic orthogonal polynomials. We extend our results to any number of cuts and to non-real potentials.Comment: 35 pages, Latex (1 file) + 3 figures (3 .eps files), revised to take into account a few reference

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur

    Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach

    Full text link
    We deduce the effects of quantum interference on the conductance of chaotic cavities by using a statistical ansatz for the S matrix. Assuming that the circular ensembles describe the S matrix of a chaotic cavity, we find that the conductance fluctuation and weak-localization magnitudes are universal: they are independent of the size and shape of the cavity if the number of incoming modes, N, is large. The limit of small N is more relevant experimentally; here we calculate the full distribution of the conductance and find striking differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended), hub.pam.94.

    Comparing families of dynamic causal models

    Get PDF
    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data

    Theory of random matrices with strong level confinement: orthogonal polynomial approach

    Full text link
    Strongly non-Gaussian ensembles of large random matrices possessing unitary symmetry and logarithmic level repulsion are studied both in presence and absence of hard edge in their energy spectra. Employing a theory of polynomials orthogonal with respect to exponential weights we calculate with asymptotic accuracy the two-point kernel over all distance scale, and show that in the limit of large dimensions of random matrices the properly rescaled local eigenvalue correlations are independent of level confinement while global smoothed connected correlations depend on confinement potential only through the endpoints of spectrum. We also obtain exact expressions for density of levels, one- and two-point Green's functions, and prove that new universal local relationship exists for suitably normalized and rescaled connected two-point Green's function. Connection between structure of Szeg\"o function entering strong polynomial asymptotics and mean-field equation is traced.Comment: 12 pages (latex), to appear in Physical Review
    • …
    corecore