7,244 research outputs found

    Adsorption of a binary mixture of monomers with nearest-neighbour cooperative effects

    Full text link
    A model for the adsorption of a binary mixture on a one-dimensional infinite lattice with nearest neighbour cooperative effects is considered. The particles of the two species are both monomers but differ in the repulsive interaction experienced by them when trying to adsorb. An exact expression for the coverage of the lattice is derived. In the jamming limit, it is a monotonic function of the ratio between the attempt frequencies of the two species, varying between the values corresponding to each of the two single species. This is in contrast with the results obtained in other models for the adsorption of particles of different sizes. The structure of the jamming state is also investigated.Comment: v2: Errors in the figures fixed; same text; 23 pages, 5 figures. Accepted for publication in Journal of Physics A: Mathematical and Genera

    Equitable edge colored Steiner triple systems

    Get PDF
    A k-edge coloring of G is said to be equitable if the number of edges, at any vertex, colored with a certain color differ by at most one from the number of edges colored with a different color at the same vertex. An STS(v) is said to be polychromatic if the edges in each triple are colored with three different colors. In this paper, we show that every STS(v) admits a 3-edge coloring that is both polychromatic for the STS(v) and equitable for the underlying complete graph. Also, we show that, for v 1 or 3 (mod 6), there exists an equitable k-edge coloring of K which does not admit any polychromatic STS(v), for k = 3 and k = v - 2

    Unveiling hidden structures in the Coma cluster

    Get PDF
    We have assembled a large data-set of 613 galaxy redshifts in the Coma cluster, the largest presently available for a cluster of galaxies. We have defined a sample of cluster members complete to b26.5=20.0_{26.5}=20.0, using a membership criterion based on the galaxy velocity, when available, or on the galaxy magnitude and colour, otherwise. Such a data set allows us to define nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient number of galaxies per sample to make statistical analyses possible. Using this sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have re-analyzed the structure and kinematics of Coma, by applying the wavelet and adaptive kernel techniques. A striking coincidence of features is found in the distributions of galaxies and hot intracluster gas. The two central dominant galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly populated with galaxies brighter than b26.5=17_{26.5}=17 and well separated in velocity space. On the contrary, the fainter galaxies tend to form a single smooth structure with a central peak coinciding in position with a secondary peak detected in X--rays, and located between the two dominant galaxies; we suggest to identify this structure with the main body of the Coma cluster. A continuous velocity gradient is found in the central distribution of these faint galaxies, a probable signature of tidal interactions rather than rotation. There is evidence for a bound population of bright galaxies around other brightest cluster members. Altogether, the Coma cluster structure seems to be better traced by the faint galaxy population, the bright galaxies being located in subclusters. We discuss this evidence in terms of an ongoing accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil

    Memory effects in vibrated granular systems

    Full text link
    Granular materials present memory effects when submitted to tapping processes. These effects have been observed experimentally and are discussed here in the context of a general kind of model systems for compaction formulated at a mesoscopic level. The theoretical predictions qualitatively agree with the experimental results. As an example, a particular simple model is used for detailed calculations.Comment: 12 pages, 5 figures; to appear in Journal of Physics: Condensed Matter (Special Issue: Proceedings of ESF SPHINX Workshop on ``Glassy behaviour of kinetically constrained models.''

    Solar-like oscillations in a massive star

    Full text link
    Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (b Cephei) pulsator.Comment: Published in Sience, 19 June 2009, vol. 324, p. 154

    Atomic Modeling of Photoionization Fronts in Nitrogen Gas

    Full text link
    Photoionization fronts play a dominant role in many astrophysical environments, but remain difficult to achieve in a laboratory experiment. Recent papers have suggested that experiments using a nitrogen medium held at ten atmospheres of pressure that is irradiated by a source with a radiation temperature of TR_{\rm R}\sim 100 eV can produce viable photoionization fronts. We present a suite of one-dimensional numerical simulations using the \helios\ multi-material radiation hydrodynamics code that models these conditions and the formation of a photoionization front. We study the effects of varying the atomic kinetics and radiative transfer model on the hydrodynamics and ionization state of the nitrogen gas, finding that more sophisticated physics, in particular a multi-angle long characteristic radiative transfer model and a collisional-radiative atomics model, dramatically changes the atomic kinetic evolution of the gas. A photoionization front is identified by computing the ratios between the photoionization rate, the electron impact ionization rate, and the total recombination rate. We find that due to the increased electron temperatures found using more advanced physics that photoionization fronts are likely to form in our nominal model. We report results of several parameter studies. In one of these, the nitrogen pressure is fixed at ten atmospheres and varies the source radiation temperature while another fixes the temperature at 100 eV and varied the nitrogen pressure. Lower nitrogen pressures increase the likelihood of generating a photoionization front while varying the peak source temperature has little effect.Comment: 17 pages, 10 figures, accepted to physics of plasma

    2-Dust : a Dust Radiative Transfer Code for an Axisymmetric System

    Get PDF
    We have developed a general purpose dust radiative transfer code for an axisymmetric system, 2-Dust, motivated by the recent increasing availability of high-resolution images of circumstellar dust shells at various wavelengths. This code solves the equation of radiative transfer following the principle of long characteristic in a 2-D polar grid while considering a 3-D radiation field at each grid point. A solution is sought through an iterative scheme in which self-consistency of the solution is achieved by requiring a global luminosity constancy throughout the shell. The dust opacities are calculated through Mie theory from the given size distribution and optical properties of the dust grains. The main focus of the code is to obtain insights on (1) the global energetics of dust grains in the shell (2) the 2-D projected morphologies that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle of the shell. Here, test models are presented with discussion of the results. The code can be supplied with a user-defined density distribution function, and thus, is applicable to a variety of dusty astronomical objects possessing the axisymmetric geometry.Comment: To be published in ApJ, April 2003 issue; 13 pages, 4 tables, 17 figures, 5-page appendix (no figures for the main text included in this preprint). For the complete preprint and code distribution, contact the author
    corecore