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Abstract 

The Ca2+-insensitive transient outward current, ilo, was studied at 20-24°C in rat ventricular myocytes with the whole cell recording 
patch-clamp technique. The current was recorded before and after replacement of chloride by methanesulfonate or aspartate or in the 
absence and the presence of chloride channel blockers, SITS or 9-anthracene carboxylic acid. In control conditions (in the presence of 
external divalent cations, Ca 2 ÷ and Cd ~ +, Cd 2 + being used to suppress Ca 2 ÷ current), ilo inactivation was composed of a fast and a slow 
component. When methanesulfonate was substituted for external CI- ,  the peak current decreased to a variable extent, but the inactivation 
of the remaining current was still composed of a fast and a slow component. In contrast, the inactivation of the difference current was 
well fitted by a single exponential. The time to peak of the difference current was shorter than that of the current recorded either in the 
absence or the presence of methanesulfonate. Both activation- and steady-state inactivation-voltage curves were either unchanged (n = 4) 
or shifted by a few mV (5.5 mV, n = 14) towards positive potentials when methanesulfonate was substituted for C1-. The current 
remaining in methanesulfonate reversed at potentials closed to E K. The difference current was composed of a peak and a steady-state 
component. The peak was suppressed by 4-aminopyridine whereas the steady-state component was not. The peak was also suppressed 
when pipette solution contained Cs + instead of K + but was still present when the Hepes concentration in both external and pipette media 
was increased 5-fold (50 mM vs. 10 mM). When aspartate was substituted for CI -  or when 2 mM SITS was added to the external 
solution (in the absence of Ca 2÷ and Cd 2+ because aspartate is known to chelate Ca 2÷ ions and possibly other divalent cations), ilo was 
reduced to a similar extent in the two cases and the difference current was composed of a peak (inactivation fitted by a single exponential) 
and a steady-state component. The SITS-sensitive transient current reversed at a potential close to Ecl. When 5 mM 9-anthracene 
carboxylic acid was added to external solution (in the presence of Ca 2÷ and Cd2÷), the peak of the difference current was similar to that 
observed when CI -  was substituted by methanesulfonate. The difference current resulting from the substitution of methanesulfonate for 
chloride was not changed when the pipette solution contained either 50 mM EGTA (instead of 5 mM) or 10 mM EGTA and 10 mM 
BAPTA. The nature of Cs +- and 4-aminopyridine-sensitive transient outward current suppressed by chloride ion substitutes or chloride 
channel blockers is discussed. 
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I.  Introduct ion  

In rat ventr icular  cells,  the exis tence  o f  a large and 

long- las t ing 4 -aminopyr id ine-sens i t ive  transient  ou tward  

current  [ 1 -6 ]  offers  a logical  explanat ion  for  the very  short 
durat ion o f  the initial part o f  the act ion potent ial  plateau o f  

the rat vent r ic le  and the low ampl i tude  o f  its late compo-  
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nent [7]. S ince  the discovery,  in cardiac tissues, o f  the 

transient ou tward  current  [8,9], much  attention has been 

paid to the ionic nature o f  the current  ca rde r  (for  reference 

see [ 10]). 

Because  the transient ou tward  current  was reduced  in 
chlor ide-f ree  solution,  it was initially suggested that the 

current  was ca rded  mainly  by chlor ide ions [11-14] .  How-  
ever,  Kenyon  and Gibbons  [15], suggested that this appar- 

ent  C1-  dependence  was due to changes  in external  Ca 2÷ 

act ivi ty  caused by chela t ion o f  free Ca 2+ by the C1- 

substitutes. This  suggest ion was s t rengthened by the 
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demonstration of the dependence of the transient outward 
current on external free Ca 2 + [ 16,17], and by the fact that 
the current was much less sensitive to replacement of 
external CI- when free Ca 2+ was maintained at a constant 
level [ 18,19]. In addition, the transient outward current was 
blocked by K + channel antagonists, such as tetraethyl- 
ammonium and 4-aminopyridine, suggesting that, in fact, 
K + ions were the main charge carriers of the current. 
Subsequent studies demonstrated that the transient outward 
current can be divided into two components, i.e., a longer- 
lasting, 4-aminopyridine sensitive, Ca~+-independent com- 
ponent referred to as ilo, i t ,  /to o r  ito 1 and considered as 
being carried by K + ions, and a brief Ca~+-dependent 
component referred to as ibo, iK(C~ ) o r  ito 2 [20-25]. In 
ferret ventricular myocytes, a small component of 4- 
aminopyridine and Cd 2 +-insensitive transient outward cur- 
rent was described as being a chloride current [26] and, 
more recently the brief Ca~+-dependent component of the 
transient outward current was shown to be carried by C1- 
ions in cardiac tissues of the rabbit as well as in canine 
ventricular myocytes and, as a result, was referred to as 
icl~Ca) [27-30]. Here, we report that in adult rat ventricular 
myocytes the Cs +- and 4-aminopyridine-sensitive, Ca i2+- 
independent component of transient outward current, ilo, 
was depressed by substitution of chloride ions by methane- 
sulfonate or aspartate, or by addition of 2 mM SITS or 5 
mM 9-anthracene carboxylic acid. In addition, the SITS- 
sensitive component of the transient current was shown to 
reverse at a potential close to Ecl. 

2. Materials and methods 

2.1. Preparation of myocytes and solutions 

Ventricular myocytes from adult rat hearts were enzy- 
matically dissociated as previously described [5]. Cells 
were mechanically dispersed by gently shaking a small 
piece of tissue cut from either right or left ventricular 
myocardium in a plastic Petri dish containing the standard 
extracellular solution in which the myocytes were main- 
tained. In order to record the calcium-insensitive transient 
outward current with minimal contamination from Ca 2+- 
sensitive currents, calcium current was suppressed by ex- 
ternal Cd 2+ and Ca 2+ release from the sarcoplasmic retic- 
ulum was blocked both by external ryanodine and internal 
EGTA or EGTA and BAPTA. In addition, the sodium 
current was eliminated by substituting choline chloride for 
NaC1, the possible activation of muscarinic potassium 
currents by choline being prevented by addition of at- 
ropine. Therefore, the standard extracellular solution in 
which cells were maintained contained (in mM): 135 
NaC1, 5.4 KC1, 1.1 MgC12, 0.18 CaC12, 0.5 CdC12, 10 
Hepes, 10 glucose, 1 ribose, 0.001 ryanodine, 0.01 at- 
ropine sulfate; pH was adjusted to 7.4 with NaOH. The 
standard superfusion medium contained (mM): 135 choline 

chloride, 5.4 KC1, 1.1 MgC12, 1.8 CaC12, 0.5 CdC12, 10 
Hepes, 1 ribose, 10 glucose, 0.001 ryanodine, 0.01 at- 
ropine sulfate; pH was adjusted to 7.4 with KOH. The 
intracellular pipette medium was a nominally calcium-free 
solution, containing (mM): 130 K-aspartate, 10 KC1, 4 
MgATP, 3 MgC12, 5 phosphocreatine (di-Tris salt), 10 
glucose, 5 EGTA, 10 Hepes; pH was adjusted to 7.2 with 
KOH. In some experiments the concentration of EGTA 
was increased either to 50 mM or to 10 mM in the 
simultaneous presence of 10 mM BAPTA. The external 
concentration of C1- was altered by replacing choline 
chloride with equimolar concentration of choline aspartate 
or choline methanesulfonate (choline-CH3SO3). To avoid 
large liquid junction potentials between pipette and bath 
solution, arising from the reduction of external CI- con- 
centration, the altered solution contained a residual CI- 
concentration of either 12.2 mM, coming in part from the 
unchanged divalent salt concentration, or 5.4 mM coming 
from KC1 in divalent-free solution. Otherwise, the junction 
potential problem was treated in the same way as Zygmunt 
and Gibbons [28], i.e., the Ag]AgCI electrode was con- 
nected to the Petri dish by a 3 M KCI agar bridge. In a few 
experiments the standard superfusion medium contained 
NaC1 instead of choline chloride and sodium methanesul- 
fonate was used instead of choline methanesulfonate. SITS 
(4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid) 
(Serva, Heidelberg, Germany), 9-anthracene carboxylic 
acid (Sigma Chemical) were dissolved directly in the 
superfusate to achieve the desired concentration. SITS was 
prepared and used in a darkened room. All experiments 
were conducted at room temperature (20-24°C). 

2.2. Current recordings and analysis 

Macroscopic current recordings were obtained with the 
classical whole-cell voltage-clamp method using a patch- 
clamp amplifier with a 100 M/2 feedback resistor (Model 
8900, Dagan Corp., Minneapolis, MN, USA). Patch 
pipettes (1-3 MI2 when filled with experimental solu- 
tions) were pulled from Pyrex capillaries (Coming code 
7740, Coming Glass, Coming, NY) and were not fire- 
polished before use. The resistance in series with the cell 
membrane was compensated, whereas neither cell mem- 
brane capacitive current nor leakage current was compen- 
sated. A flow of solution from one of a series of five piped 
outlets continuously superfused the cell from which 
recording was being made. The flow rate of perfusion 
solutions was 50-100 /xl/min. Currents were elicited by 
700 ms or 1 s voltage steps in 10 mV increments from a 
holding potential of - 8 0  mV. Under our experimental 
conditions, the total outward current was composed of a 
transient component identified as a calcium-independent 
transient current, ilo, and a time-independent component, 
i c. Voltage steps were applied at a frequency of 0.1 Hz, 
which allowed complete recovery of ijo between pulses. 
Whole-cell currents were recorded without filtering (wide 
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band) and stored upon digital audio tape and/or  digitized 
at 20 kHz and analyzed with a microcomputer (Tandon, 
MCS 486) using an $200 interface (Cambridge Research 
Systems, Cambridge, UK). They were retrieved on a HP 
Laserjet III printer (Hewlett-Packard, San Diego, CA). The 
cell capacitive current was exponentially fitted and then 
numerically subtracted from the recorded current trace. 
Peak current of the transient outward current was deter- 
mined and the kinetic analysis of the current inactivation 
was performed according to Lefevre et al. [5]. The data for 
steady-state inactivation and activation were fitted to the 
theoretical Boltzmann function using the non-linear least- 
squares gradient-expansion algorithm of Marquardt. In the 
case of activation, the relative conductance was computed 
by determining the chord conductance as a function of 
membrane potential, assuming that the transient outward 
current was carried only by potassium ions, i.e., that it 
reversed at the K ÷ equilibrium potential, E K. As maxi- 
mum experimental values did not reflect maximum chord 
conductances, we determined the latter using a computer- 
calculated fit to a Boltzmann relation, according to the 
equation: 

G = Gmax/{l "k- exp[(W m - Vo.5)/k]} 

where Gma x is the maximum chord conductance, G the 
chord conductance calculated at the membrane potential 
V m, V0. 5 the potential at which the conductance is half- 
maximally activated, and k is the slope factor inversely 
proportional to the steepness of the activation curve. When 
possible, results are given as mean + standard deviation 
(S.D.) of n determinations. 

3. Results 

3.1. External chloride ion substitution 

3.1.1. Methanesulfonate 
Fig. 1 shows the depressing effect of substitution of 

external C1- by methanesulfonate on transient outward 
current (40) in two different myocytes, one exhibiting a 
large effect (A) and the other a moderate and more usual 
effect (B) of chloride substitution. It is worth noting that 
the pipette solution was different in the two experiments. 
In A, it contained 5 mM EGTA whereas in B it contained 
50 mM EGTA in order to maximally buffer cytosolic 
calcium. The reduction of peak current amplitude observed 
after suppression of external chloride was much smaller in 
B (26.6% at + 60 mV) than in A (60.8%) but this effect 
cannot be attributed to the difference in EGTA concentra- 
tion of the pipette solution because in other experiments 
we observed smaller current reductions with low EGTA 
concentrations and larger reductions with high EGTA con- 
centrations. Fig. 1Aa and 1Ba show typical families of 
current traces obtained in control conditions, i.e., in the 
presence of 142 mM external C1- concentration. Depolar- 

izations to membrane potentials more positive than - 2 0  
mV elicited large, rapidly activating transient outward 
currents, which increased in amplitude with increasing 
depolarizations. The current peak was reached within 15 
ms for strong depolarizations ( + 6 0  mV). The current 
decayed rapidly over the first 100 ms, then more slowly, 
indicating the contribution of two kinetic components to 
the time-dependent fraction of outward current [5]. At the 
end of the voltage step (700 ms in A, 1000 ms in B) there 
remained a sustained component of outward current. In 
Fig. l a b  and 1Bb the families of outward current traces 
were obtained when external C1- was substituted by 
methanesulfonate. 40 was sizeably decreased compared to 
control conditions whereas the sustained component al- 
though somewhat reduced was less affected by the substi- 
tution. This effect developed in less than 5 s, and was not 
always fully reversible, specially for long term exposures, 
possibly as a result of some detergent-like effect of high 
concentrations of methanesulfonate. 

In three experiments, 10 mM EGTA + 10 mM BAPTA 
were used as intracellular Ca 2÷ buffer in order to eliminate 
the possibility that fast changes in internal Ca 2+ concentra- 
tions were responsible for the effect of chloride substitu- 
tion, since BAPTA is a faster buffer than EGTA. The 
reduction of peak amplitude observed in these experiments 
after suppression of external chloride was 31 _ 11%. 

Fig. 1Ac and 1Bc show the families of current traces 
obtained by subtracting the current traces obtained in the 
presence of methanesulfonate from those recorded in con- 
trol conditions. Difference currents appear as brief peaks 
of transient outward current followed by relatively small 
steady-state components. Current-voltage relationships 
(Fig. lAd and 1Bd) show that either in control or in 
chloride-free solution the current began to activate be- 
tween - 2 0  and 0 mV and increased with increasing 
depolarizations. After substitution of C1- by methanesul- 
fonate, the peak amplitude measured at +60  mV was 
reduced to 72 + 13% (n =43).  Normalization of peak 
current-voltage relationships obtained in methanesulfonate 
solution (filled diamonds) to those obtained in control 
solution (open square) indicates that chloride removal in- 
duced either a small negative shift (Fig. IAa) or almost no 
shift (Fig. 1Bd) in current-voltage relationships. In a dif- 
ferent group of 11 cells (5 mM EGTA in the pipette 
solution) substitution of external chloride by methanesul- 
fonate induced a mean positive shift of 5.5 mV of both 
activation-voltage and steady-state inactivation-voltage re- 
lationships (Fig. 2A). 

The time to peak, for the three families of current traces 
of Fig. 1A, decreased with increasing membrane depolar- 
ization. Ranging between 38 and 9 ms in control condi- 
tions, the time to peak markedly increased in chloride-free 
solution, reaching values comprised between 92 and 20 
ms. The time to peak of the difference current was always 
shorter at a given potential than those measured either in 
control or in chloride-free solutions. This fact (i.e., peaks 
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were not measured at the same time) explains why, at a 
given membrane potential, the current peak measured in 
Fig. 1 Ab added to the difference current peak measured in 

Fig. 1Ac gives a total value higher than that of the control 
current peak measured in Fig. 1Aa. This is also visible in 
the current-voltage relationships shown in Fig. lAd. 
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Fig. 2. (A) Effect of substitution of extracellular chloride by methanesulfonate on activation- and inactivation-voltage relationships of transient outward 
current. In the case of activation-voltage relationships, normalized chord conductance (relative conductance) obtained from 11 myocytes, was plotted 
versus membrane potential before (O, SD upward) and after (O,  SD downward) chloride substitution by methanesulfonate. The curves were fitted to 
experimental data according to procedures described in the text. The values of V0. 5 and k (see Methods section) were 18.7 mV and 12.4 mV respectively 
for chloride medium versus 24.2 mV and 12.5 mV for methanesulfonate medium. In the case of steady-state inactivation-voltage relationships obtained 
from 9 myocytes before (A,  8D downward) and after (A,  SD upward) chloride substitution by methanesulfonate, the curves were fitted to experimental 
data according to the following Boltzmann relation: I/Ima x = 1/{1 + e xp [ - ( V  m -Vos) /k ]} ,  where V0. 5 = -26 .8  mV, k =  -4 .1  mV for chloride 
medium versus V0. 5 = -21 .3  mV and k = - 4 . 0  mV for methanesulfonate medium. Holding potential was - 8 0  inV. (B) Reduction of transient outward 
current resulting from chloride substitution by methanesulfonate is not due to a direct inhibitory effect of methanesulfonate. Currents were elicited by 1 s 
pulses to + 60 mV from a holding potential of - 8 0  mV. (A) Upper traces, currents in control choline chloride solution (1) and after addition of 100 mM 
methanesulfonate to the control solution (2). Lower trace, difference current [1,2]. 

Inactivation of  ijo can be generally well fitted by two 
exponentials with a fast (30 ms < ~-< 60 ms) and a slow 
(200 ms < T <  600 ms) time constant, respectively [5,31]. 

The inactivation of  the current recorded in C1--free media 
can also be fitted by two exponentials.  Stow time constant 
values were not appreciably modified by methanesulfonate 

Fig. 1. Effect of substitution of extracellular chloride by methanesulfonate on transient outward current recorded in rat ventricular myocytes. (A) and (B) 
correspond to two different myocytes; a and b, current traces recorded in normal chloride solution (CI-, a) and in methanesulfonate solution (CH3503, b). 
c, difference currents (expanded traces are shown in the inset). Currents were elicited by 700 ms (A) and 1000 ms (B); depolarizing voltage steps applied at 
0.1 Hz, from a holding potential of - 8 0  mV in 10 mV increments, between - 5 0  and + 60 mV. d, peak current-voltage relationships in chloride solution 
(El) and in methanesulfonate solution (O); difference current (A); normalization of current-voltage relationship obtained in methanesulfonate solution 
( • ) respectively to that obtained in chloride. Peak current amplitudes were measured with respect to the time-independent component of outward current 
determined at each potential (by kinetic analysis when necessary). In these and other current traces, arrows indicate zero current level. The pipette solution 
contained 5 mM EGTA in A and 50 mM EGTA in B. 
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substi tution at negat ive  potentials  but were  increased by 

1 5 - 2 5 %  at pos i t ive  potentials.  Fast  t ime constants  were  

also increased in C1-- f ree  media .  In contrast,  the inact iva-  

tion o f  the di f ference current  can always be adequately  

fi t ted by a single exponent ia l  (and a steady-state compo-  

nent). In the potential  range be tween  + 10 and + 4 0  m V  

the t ime  constant  o f  inact ivat ion o f  the d i f ference  current  

was sizeably smal ler  than that of  the fast componen t  of  the 

current  remaining in the absence of  external  C I - .  As a 

result, a l though fairly large at the t ime of  its peak, the 

di f ference current  carry a re la t ively smal ler  quanti ty of  

charges  than the current  persis t ing after chloride removal .  

The  current  remaining in the presence  o f  methanesul fonate  

is a K + current. This  was shown by the fact  that in 
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Fig, 3. (A) Reduction of transient outward current resulting from ch)oride substitution by methanesnlfonate is not due to a change in internal pH. Both 
external and pipette media contained 50 mM Hepes. Upper traces, currents in control choline C1 solution (1) and after substitution of the external chloride 
by methanesulfonate (2). Lower trace, difference current [1,2], (B) Inhibitory effect of 3 mM 4-aminopyridine on transient outward currents. Upper traces, 
currents recorded in control condition (1), after substitution of methanesulfonate for chloride (2), after addition of 4-aminopyfidine in control condition (3) 
and after addition of 4-aminopyridine in methanesulfonate (4). Lower traces, difference current (control minus methanesulfonate) in the absence (1) and the 
presence of 4-aminopyridi~e (2). Currents were elicited by 1 s pulses to + 60 mV from a holding potential of - 80 mV. 
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C1--free medium tail currents following 20 ms pulses at 
+ 4 0  mV reverse at - 7 7 . 0  + 2.2 mV (n  = 5), i.e., very 
close to the estimated E K ( - 8 1  mV) (not illustrated). 

We checked that methanesulfonate did not alter by itself 
the transient outward current. The current traces (Fig. 2B) 
obtained in control medium with and without addition of 
100 mM methanesulfonate are strictly superimposed dur- 
ing depolarizing steps to + 60 mV from a holding poten- 
tial of - 8 0  mV, although the background current was 
somewhat reduced in the presence of methanesuifonate. 
Because replacement of extracellular chloride by either 
aspartate or methanesulfonate could give rise to significant 
intracellular pH changes (the extracellular pH being sys- 

tematically adjusted at the normal value), we measured the 

effect of substituting methanesulfonate to chloride after 
having increased 5-fold (50 mM instead of 10 mM) the 
concentration of Hepes in the pipette solution and external 
media tested. The result of a typical experiment is shown 
in Fig. 3A. It can be seen that chloride substitution resulted 
in a sizable reduction in peak current amplitude by 30.2% 
(26.2 + 9.1%, n = 5). In the experiment shown in Fig. 3A, 
the shift towards positive potentials of the activation- and 
inactivation-voltage curves resulting from replacement of 
chloride by methanesulfonate was only of 1.2 mV. In a 
few experiments, external chloride removal was performed 
in the presence of normal external sodium by replacing 
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Fig. 4. Effect of substitution of extracellular chloride by aspartate or methanesulfonate on the transient outward current of the same myocyte in the absence 
of extracellular calcium and cadmium. (A) Chloride solution, C1-. (B) Chloride replaced by aspartate, Asp-. (C) Chloride replaced by methanesulfonate, 
CH3SO 3. (D) Difference currents (as indicated above each current trace family). Same voltage step protocol as in Fig. 1, except that depolarizing pulses 
were to - 70 mV, then between - 50 and + 60 mV. (E) Effects of substitution of external chloride by aspartate or methanesulfonate on peak amplitude of 
transient outward current (expressed as a function of membrane potential) in the absence of extracellular calcium and cadmium. Symbols are: CI- ([]), 
Asp- (O), CH3SO ~- (z~), difference currents, CI- minus Asp- (~), and CI-minus CH3SO ~ (v). 
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130 mM NaC1 by 130 mM sodium methanesulfonate. 
Except  for the presence of  large and brief  initial peaks of  
inward Na current (which disappeared frequently with time 
as a result of  the well-known h ~ - E  m shift towards nega- 
tive potentials), the characteristics of the difference current 
(NaC1 minus sodium methanesulfonate) were not different 
from those recorded in the absence of external Na +. 

3.1.2. Effect  o f  extracellular 4-aminopyridine or intra- 

cel lular Cs + 
Although the above described results suggest that the 

current suppressed by substitution of  methanesulfonate for 
chloride ions is a chloride current, we tested the effects of 
two K + channel blockers, i.e., 4-aminopyridine and Cs + 
ions. The upper traces of Fig. 3B show the effect of 3 mM 
4-aminopyridine on the transient outward currents recorded 
either in control conditions or in the presence of  methane- 
sulfonate, whereas the lower traces of Fig. 3B show the 
effect of  4-aminopyridine on the difference current. It can 
be seen that the brief peak of the difference current was 
entirely suppressed by 4-aminopyridine,  leaving unaffected 
a more slowly activating sustained component of  outward 
current. When potassium aspartate (130 raM) normally 
present in the pipette solution was replaced by 130 mM 
caesium aspartate, the transient outward current recorded 
just  after membrane disruption progressively decreased in 
amplitude and after = 3 rain was almost entirely sup- 
pressed (not illustrated). When extracellular choline chlo- 
ride was further replaced by choline methanesulfonate, the 
residual sustained current flowing during the pulse was 
somewhat reduced (as was also the holding current), but 
the difference current was entirely flat, demonstrating that 
no chloride-sensit ive transient current subsisted in the pres- 

ence of intracellular Cs +. Four different experiments gave 
the same result. 

3.1.3. Aspartate  

Because aspartate is known to chelate calcium ions and 
therefore alter extracellular calcium activity [15] and possi- 
bly that of  other divalent ions when used as a substitute for 
CI - ,  experiments using this anion were performed in 
CaZ+-free, Cd2+-free solution. In these conditions, calcium 
current was suppressed as a result of calcium removal and 
the possibil i ty that sodium current might flow through 
calcium channels was excluded because experiments were 
performed in Na+-free media. Fig. 4 shows current traces 
recorded in the same cell before (A) and after substitution 
of aspartate (B) or methanesulfonate (C) for chloride. The 
difference currents are shown in Fig. 4D. It can be seen 
that ilo was reduced to almost the same extent by the two 
CI substitutes. In 10 different experiments,  the amplitude 
of ilo measured at + 60 mV was reduced to 68 _+ 11% of 
its control value in the presence of  methanesulfonate and 
to 71 __+ 14% of its control value in the presence of  aspar- 
tate. 

In the experiment shown in Fig. 4E both the threshold 
of  control current and those of currents measured in C1-- 
free media are markedly shifted to more negative poten- 
tials (by = 50 mV) as compared with those measured in 
Fig. 1. This results from the well-known dependence of  
threshold and current-voltage relations on external divalent 
cation concentration (in the case of rat transient outward 
current, see [32]). Interestingly, the shift appears to be less 
for the difference current than for that recorded in C1 -free 
conditions, since comparison of Fig. 4A and l A d  and lBd 
shows that thresholds were shifted from --- - 20 to = - 70 

200 ms 

C 

Fig. 5. Effects of SITS and of substitution of extracellular chloride by aspartate on the transient outward current of the same myocyte in the absence of 
extracellular calcium and cadmium. (A) Chloride solution (CI-). (B) Chloride replaced by aspartate (Asp-). (C) 2 mM SITS in chloride solution. (D) 
Difference currents as indicated above each current trace family. Currents were elicited by 1 s depolarizing voltage steps applied at 0.1 Hz, from a holding 
potential of -80  mV in 10 mV increments, between -60  and + 60 mV. 
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mV for the latter and only from = - 2 0 t o  = - 4 0  mV 
for the former. 

3.2. Chloride channel blockers 

3.2.1. SITS 
The next step was to study the effects of C1- channel 

blockers on i~o and compare these effects to those ob- 
served when external C1- was replaced by impermeant 
anions. Because both aspartate and methanesulfonate have 
been comparatively studied in the absence of divalent ions 
(Fig. 4), we also recorded comparatively the effects of 
aspartate and SITS in the absence of both Ca 2+ and Cd 2+. 

Fig. 5 shows the effects of aspartate substituted for chlo- 
ride and those of 2 mM SITS in the same cell. Both 
actions resulted in a similar decrease in ilo (Fig. 5B and 
C), thus unmasking similar chloride-sensitive and SITS- 
sensitive transient outward current components. The major 
difference between the two components shown in Fig. 5D 
results from a larger steady-state outward current compo- 
nent suppressed by SITS compared with that suppressed 
by CI- removal. The difference currents shown in Fig. 5D 
have time courses which are not markedly different from 
those shown in Fig. 4D. Results similar to those reported 
in Fig. 5 were obtained in eight other myocytes. 

In order to test whether the reversal potential of the 
SITS-sensitive transient current behaves as a chloride elec- 
trode we increased the pipette chloride concentration to 
140 mM and adjusted the extracellular chloride concentra- 
tion (42.5 mM) so that the equilibrium potential for C1 
ion, Eel, reached a value of + 30.5 mV. Fig. 6A shows the 
result of one of these experiments. The currents shown in 
the figure are difference currents resulting from the sub- 
traction of currents recorded in the absence and the pres- 
ence of 2 mM SITS when the membrane was submitted to 
varying depolarizing pulses from a holding potential of 
- 8 0  mV. It can be seen that a peak of transient inward 
current occurred at potentials ranging from - 1 0  mV to 
+ 20 mV. This current was suppressed at + 30, + 40 mV, 
then became outward at more positive potentials. We 
performed the same protocol using another extracellular 
chloride concentration, i.e., 12.9 mM. In Fig. 6B the 
reversal potential was plotted as a function of the 
log 10([140]/[C1 ]o) and a linear regression gave a slope of 
- 5 9 . 0  mV per 10-fold change in [CI-]o. 

3.2.2. 9-Anthracene carboxylic acid 
The action of 9-anthracene carboxylic acid was studied 

in the presence of divalent cations (Ca 2+ and Cd2+). 
Therefore, the effects of this chloride channel blocker can 
be more adequately compared with the results shown in 
Fig. 1 than with those shown in Figs. 4 and 5. Fig. 7 shows 
current traces obtained in control chloride medium (A) and 
after application of 5 mM 9-anthracene carboxylic acid 
(B), whereas the difference current traces are shown in C 
and corresponding current-voltage relationships in D. The 
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12.9 42.5 
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Fig. 6. Dependence of reversal potential of SITS-sensitive component of 
transient outward current on CI -  gradient. (A) Current traces showing 
the voltage dependence of the SITS-sensitive component of the transient 
outward current. In this experiment the calculated Ect was + 30.5 mV 
(bathing solution 42.5 mM C1-; pipette solution 140 mM CI -  ). Currents 
were elicited at a frequency of 0.1 Hz by 1 s voltage steps to the indicated 
potentials, from a holding potential of - 8 0  mV. (B) Relationship be- 
tween reversal potential of the SITS-sensitive component of transient 
outward current and l o g l 0 ( [ C l - ] i / [ C I - ] o )  obtained with [C1-]i = 140 
mM. The least-square fit of the data yielded a slope of - 59.0 mV per 
10-fold change of [CI- ]o- 

effect of 9-anthracene carboxylic acid developed in less 
than 20 s and was fully reversible. Comparison of Fig. 1Ac 
and 1Be and 7C shows that the 9-anthracene carboxylic 
acid sensitive current resembles that suppressed by 
methanesulfonate, although it inactivates somewhat more 
slowly and has a larger steady-state component. 
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Fig. 7. Effect of 9-anthracene carboxylic acid on the transient outward current in the presence of external calcium and cadmium. (A) Control solution. (B) 
After addition of 5 mM 9-anthracene carboxylic acid. (C) Difference current. (D) Current-voltage relationships in control conditions ([]),  in the presence 
of 9-anthracene carboxylic acid (©)  in the case of the difference current ( ~ ) and normalization of current-voltage relationship obtained in in the presence 
of 9-anthracene carboxylic acid ( • ), respectively, to that obtained in control conditions. Currents were elicited by 1 s depolarizing voltage steps applied at 
0.1 Hz, from a holding potential of - 8 0  mV in 10 mV increments, between - 6 0  and + 60 mV. 
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Fig. 8. Inhibitory effect of 10 mM caffeine on transient outward current and persistence of the current decrease induced by substitution of methanesulfonate 
for chloride in the presence of caffeine. Currents were elicited by 1 s pulses to + 60  mV from a holding potential of - 8 0  mV. (A), current in control 
choline CI solution (1), after addition of 10 mM caffeine to the control solution (2) and after substitution of external chloride by methanesulfonate in 
presence of 10 mM caffeine (3). (B) and (C) Difference currents, respectively 1 - 2 and 2 - 3. 
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3.3. Effect of caffeine 

Some of  our previous observations indicated that, in the 
absence of  calcium current (suppressed by 0.5 mM Cd 2+ 
in the external solution) and therefore in the absence of  
CaZ+-induced Ca 2+ release and Ca>- induced  outward 
current (ryanodine being in addition present in the superfu- 
sion medium), the transient outward current was reduced 
by caffeine in rat ventricular myocytes. Therefore, we 
examined the possibility that the current component sup- 
pressed by caffeine was the same as that suppressed by 
removal of external chloride. As shown in Fig. 8A (traces 
1 and 2) the addition of  10 mM caffeine to the standard 
superfusion medium produced an inhibition of  outward 
current. The caffeine-sensitive component of  outward cur- 
rent (Fig. 8B) was composed of  an initial slowly decaying 
component followed by a sustained component. When 
external chloride was replaced by methanesulfonate in the 
continuous presence of  caffeine, the residual outward cur- 
rent was further reduced. The difference current (Fig. 8C) 
was quite similar to that obtained when methanesulfonate 
was substituted for chloride in the absence of caffeine (see, 
for example, Fig. 3B). It can therefore be concluded that 
the current suppressed by removal of  external chloride is 
different from that suppressed by caffeine. 

4. Discussion 

The main result reported in the present paper is that the 
4-aminopyridine-sensitive transient outward current, ilo (or 
ito 1), recorded in rat ventricular myocytes was consistently 
reduced (i) by replacement of  external chloride with imper- 
meant or poorly permeant anions such as methanesulfonate 
or aspartate and (ii) by addition of  substances generally 
recognized as being chloride channel blockers such as 2 
mM SITS or 5 mM 9-anthracene carboxylic acid. In 
addition, the transient current suppressed by SITS was 
found to reverse at potentials close to Ecl, whereas the 
current remaining in methanesulfonate reversed at poten- 
tial close to E K. These observations suggest that, in rat 
ventricular myocytes, i~o is not a current carried exclu- 
sively by K + ions, as it is generally assumed to be in this 
type of cell [1] and in other types of  cardiac cell from 
different species [20,22,33-36], but might be composed of  
two components, one of  them being carried by C1- ions. 
However, the observation that the component of  transient 
outward current suppressed by methanesulfonate was also 
suppressed by either 3 mM 4-aminopyridine or substitution 
of  Cs + for K + in the pipette solution is very surprising 
because both substances are classical K + channel blockers. 
Most chloride currents are usually studied in the presence 
of  internal Cs + in order to eliminate K + currents, thus 
demonstrating that the corresponding permeable channels 
are not blocked by Cs + ions [28,29,37-40]. It is therefore 

necessary to examine the different possibilities of  artifacts 
capable of  accounting for our experimental results. 

4.1. Junction potentials and~or shifts in current-voltage 
relationships 

That the effect of chloride substitutes results from the 
occurrence of  junction potentials seems a priori unlikely 
for two reasons: (i) 3 mM KCI agar bridges were used 
between the Ag]AgC1 electrode and the bath; (ii) chloride 
removal was never complete, since 7.2-12.2 mM C1- ions 
remained in the external solution. Of course, if in spite of  
these conditions, some junction potential still occurred as a 
result of external chloride reduction, the current assumed 
to be triggered by a depolarizing pulse to + 60 mV might 
in fact be triggered by a less positive depolarizing pulse 
(for example + 4 0  or + 50 mV). In this case the current 
recorded during chloride substitution should indeed be 
smaller than that recorded in control solution even if no 
chloride current was suppressed by this intervention. If  this 
was the case in our experiments, the potential correspond- 
ing to the current threshold and in fact the complete 
activation-voltage relationship should be appreciably 
shifted towards positive potentials. Although a small posi- 
tive shift ( +  5.5 mV) indeed occurred in Fig. 2A, such a 
shift was absent in Fig. 1B and occurred in the negative 
rather the positive direction in Fig. IA. It is worth noting 
that, because in our experiments currents were always 
triggered from a holding potential of  - 80 mV, the shift of 
the steady-state inactivation-voltage relationship shown in 
Fig. 2A was unable to influence our recordings. Moreover, 
the corresponding shift of  the activation-voltage relation- 
ship could result in an underestimation of  the current of  
only 2.5% at + 60 inV. It is therefore unlikely that junc- 
tion potentials are at the origin of  the current depression 
induced by chloride ion substitutes. 

The observation that chloride ion substitution and addi- 
tion of  a chloride channel blockers produces comparable 
effects either in the same myocytes (aspartate and SITS in 
absence of divalent ions, Fig. 5) or in different myocytes 
(methanesulfonate and 9-anthracene carboxylic acid, in 
presence of divalent ions Figs. 1 and 7) is of  interest. In 
line with the above-mentioned possibility of artifact, such 
an effect of SITS and 9-anthracene carboxylic acid might 
result from a sizeable positive shift of the activation-volt- 
age relationship. However, in the case of Fig. 7 such a 
shift is almost nil as shown by normalisation of activa- 
t ion-voltage relationships in absence and presence of  
methanesulfonate. Moreover, if one assumes that currents 
measured in control and methanesulfonate conditions are 
both pure K + current, i.e., reversed at E K, the potentials 
of half activation were 26.7 mV and 25.6 mV, respec- 
tively, in the experiment of Fig. 7. It is therefore unlikely 
that the inhibitory effect of  chloride channel blockers 
results from a shift in activation-voltage relationships. 
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4.2. Changes in intracellular p H  or calcium let.'el 

It might be possible that replacing extracellular chloride 
by either aspartate or methanesulfonate gives rise to signif- 
icant intracellular pH changes. It is indeed well known that 
a decrease in external chloride concentration increases the 
intracellular pH [41,42] as well as contraction and calcium 
current [43], an effect postulated to result from a reduced 
competit ion of chloride with extracellular bicarbonate on 
the H C O 3 / C I -  exchanger, thus inducing an increased 
entry of  bicarbonate into the cell [44]. Such an effect 
cannot occur in our experiments,  since HCO 3 ions are 
absent from both extracellular and intracellular (pipette) 
solutions. In addition, we have shown that increasing 
massively the buffering capacity of the intracellular solu- 
tion and of external media tested (50 mM Hepes, Fig. 3B) 
did not suppress the decrease in transient outward current 
induced by replacement of  chloride with methanesulfonate, 
even when a long period of  time (15 -30  rain.) was al- 
lowed for adequate cell dialysis before chloride substitu- 
tion. Another possibil i ty would be that the transient com- 
ponent of  current suppressed by chloride ion substitutes or 
chloride channel blockers is not a Ca~+-independent cur- 
rent but a Ca~+-dependent chloride current similar to that 
described in rabbit and dog cardiac tissues [27-30].  This 
is, however, unlikely for three reasons: (i) in our experi- 
ments calcium current was suppressed either by adding 0.5 
mM Cd 2+ or by removal external Ca2~; (ii) sarcoplasmic 
reticulum was emptied by either 1 /xM ryanodine or 1 /xM 
ryanodine + 10 mM caffeine; (iii) the difference current 
resulting from substitution of  methansulfonate for chloride 
was not changed when pipette solution contained either 50 
mM EGTA instead of 5 raM, or 10 mM EGTA and 10 
mM BAPTA. For these reasons it seems unlikely that the 
difference current results from intracellular changes in 
either protons o r  C a  2+ ions. 

4.3. Direct  effect o f  chloride ion substitutes or chloride 

channel blockers 

The fact that transient outward current was unaffected 
by addition of 100 mM methanesulfonate to control solu- 
tion (Fig. 3B) shows that the reduction of ilo induced by 
substitution of  methanesulfonate for chloride ions cannot 
result from a direct inhibitory effect of  methanesulfonate. 
In a few experiments not described in the Results section, 
we tested the possibil i ty that impermeant anions or chlo- 
ride channel blockers might exert the effects described in 
the present paper by directly affecting the K + component 
of the transient outward current. We examined the effect of 
2 mM SITS after the transient outward current had been 
previously reduced by substitution of methanesulfonate for 
chloride. We observed that in the presence of methanesul- 
fonate, SITS did not change the residual transient outward 
current. The same absence of effect was observed when 
methanesulfonate was substituted for chloride in the con- 

tinuous presence of SITS. It seems therefore unlikely that 
SITS and methanesulfonate exert their effect via some 
direct action on the channel responsible for the K + compo- 
nent of  the transient outward current. Our results show that 
some differences exist in the characteristics of the currents 
suppressed by the different substitutes and blockers. Al- 
though the reasons for such minor differences cannot be 
presently clearly established, they might result from some 
lack of specificity of the blockers used. It is known that 
such blockers and specially the stilbene disulfonates ap- 
pear to exert a wide variety of effects since, for example, 
SITS and DIDS, although blocking the Ca~+-activated 
C1 current in rabbit ventricular cells [27], are not effec- 
tive antagonists of  the cAMP-act ivated chloride current 
and can even enhance this current in guinea pig ventricular 
myocytes via an effect on the /3-adrenergic receptor [45]. 
They also block ATP-sensit ive K + channels in the same 
type of cell [46]. It has been reported [28] and we have 
observed in several experiments (not illustrated) that 2 - 6  
mM SITS exerts a limited effect on the calcium current 
ic~,L, an effect which, however, cannot interfere with our 
results, since the calcium current was suppressed in all our 
experiments as mentioned above. 

Taken as a whole, the different arguments presented 
above tend to exclude the possibility that the transient 
outward current suppressed by chloride ion substitutes or 
chloride channel blockers is of artifactual origin and tend, 
a contrario, to favour the hypothesis that it is carried by 
chloride ions. The surprising fact remains that such a 
chloride current was suppressed by K + channel blockers 
such as 4-aminopyridine and Cs + ions. It is worth noting, 
however, that there is no information in the literature 
showing that all known chloride channels are Cs+-insensi - 
rive. On the contrary, we have observed that the large 
conductance chloride channels previously described in 
ventricular cells from new-born rats [47] which are in- 
volved in cell volume regulation [48] are blocked by Cs +, 
5 mM internal Cs + inducing rapid channel flicker 
(Coulombe et al., unpublished results) similar to that in- 
duced by 2 0 - 5 0  /xM external Cd 2* in single Ca 2+ chan- 
nels [49]. In a similar way, it may also be noted that fast 
chloride channels from cortical neurons and different other 
anion-selective ionic channels are blocked by internal 
tetraethylammonium, a typical K + channel blocker [50,51]. 
Whether the current described here results from the open- 
ing of a novel type of chloride channel or from chloride 
ions crossing another type of membrane structure is be- 
yond the scope of the present paper. Another attractive 
possibili ty is that part of our observations result from the 
combination of the outward K + movement resulting from 
the transient outward current and an inward coupled move- 
ment of KC1 via a cotransporter localized in the vicinity of 
K + channels. K + - C I  - and N a + - K + - 2 C I  cotransports 
have been described in cardiac myocytes [52-55].  If K + 
ions crossing the membrane during the peak of transient 
outward current are coming out from, o r / a n d  entering into 
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some mic rocompar tmen t  in which  dif fus ion is de layed  

(internal  restr icted space or  external  unstirred layer)  this 

process  can reduce  the dr iving force for K ÷ ions and 

therefore  the peak current  ampl i tude  by reducing internal 

[K +] o r / a n d  increasing external  [K +] (accumula t ion-de-  
plet ion phenomena) .  The  cotranspor ter  migh t  then a l low 

recycl ing  o f  the po tass ium and reduce or  prevent  accumu-  

lat ion-deplet ion,  thus prevent ing  the peak current  depres-  

sion. Suppress ion  o f  external  C1-  or  addi t ion o f  cotrans- 

port b lockers  could  therefore reduce  the current  and make  

the d i f ference  current  appear  to be carr ied by chlor ide ions. 

Further  work  is required to test this hypothesis .  
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