249 research outputs found

    Search for the disappearance of muon antineutrinos in the NuMI neutrino beam

    Get PDF
    We report constraints on muon antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 +/- 11.7(stat) ^{+10.2}_{-8.9}(syst) events under the assumption |dm2bar|=2.32x10^-3 eV^2, snthetabar=1.0. A fit to the two-flavor oscillation approximation constrains |dm2bar|<3.37x10^-3 eV^2 at the 90% confidence level with snthetabar=1.0

    Cadmium isotope fractionation in soil-cacao systems of Ecuador: a pilot field study

    Get PDF
    The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil – cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0–80 cm depth have very similar ÎŽ114/110Cd of about −0.1‰ to 0‰. Two 0–5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of ÎŽ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf–soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean–leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean–leaf values of −0.34‰ to −0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (−0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated

    The Magnetic Distortion Calibration System of the LHCb RICH1 Detector

    Get PDF
    The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.Comment: 9 pages, 14 figure

    The relationship between auroral hiss at high altitudes over the polar caps and the substorm dynamics of aurora

    Get PDF
    Strong variations of intensity and cutoff frequency of the auroral hiss were observed by INTERBALL-2 and POLAR satellites at high altitudes, poleward from the auroral oval. The hiss intensifications are correlated with the auroral activations during substorms and/or pseudo-breakups. The low cutoff frequency of auroral hiss increases with the distance between the aurora and the satellite footprint. Multicomponent wave measurements of the hiss emissions on board the POLAR spacecraft show that the horizontal component of the Poynting flux of auroral hiss changes its direction in good accordance with longitudinal displacements of the bright auroras. The vertical component of the Poynting flux is directed upward from the aurora region, indicating that hiss could be generated by upgoing electron beams. This relationship between hiss and the aurora dynamics means that the upgoing electron beams are closely related to downgoing electron beams which produce the aurora. During the auroral activations the upgoing and downgoing beams move and change their intensities simultaneously.<br><br> <b>Keywords.</b> Magnetospheric physics (Auroral phenomena; Plasma waves and instabilities; Storms and substorms

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 ÎŒm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 ÎŒm for translations in the plane transverse to the beam. A primary vertex resolution of 13 ÎŒm in the transverse plane and 71 ÎŒm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 ÎŒm is achieved for particles with transverse momentum greater than 1 GeV/c

    Precision luminosity measurements at LHCb

    Get PDF
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Evidence of pervasive biologically functional secondary-structures within the genomes of eukaryotic single-stranded DNA viruses

    Get PDF
    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary-structures through Watson-Crick base-pairing between their constituent nucleotides. A few of the structural elements formed by such base-pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. What is unknown, however, is (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist, and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae andGeminiviridae, and analysed these for evidence of natural selection favouring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base-paired than it is at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary-structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterised structural elements that likely have important functions within some of the ssDNA virus genomes analysed here
    • 

    corecore