16,336 research outputs found
An investigation of combustion instability in aircraft-engine reheat systems
The principal objective of this study was to examine experimentally
the effects of upstream temperature, velocity, gutter blockage, tailpipe
length, and main and pilot fuel flows, on the form of combustion instability
encountered in aircraft reheat systems which is sometimes referred to as 'buzz'.
Tests were carried out at atmospheric pressure for upstream temperatures of
between 200 and 500°C, and upstream velocities ranging from 140 to 200 ft/sec.
Three values of stabilizer blockage were employed, namely 25, 30 and 35%.
The tailpipe length was varied between 9 and 45 inches. Auto-correlation
techniques were used in the frequency analysis of the buzz waveforms.
It was found that a certain minimum tailpipe length is necessary in
order to produce buzz which is then strengthened as the tailpipe length is
increased. Buzz also becomes more pronounced with an increase in gas velocity
but stabilizer blockage appears to have no discernible effect … [cont.]
Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas
The interaction of two laser pulses in an underdense plasma has proven to be
able to inject electrons in plasma waves, thus providing a stable and tunable
source of electrons. Whereas previous works focused on the "beatwave" injection
scheme in which two lasers with the same polarization collide in a plasma, this
present letter studies the effect of polarization and more specifically the
interaction of two colliding cross-polarized laser pulses. It is shown both
theoretically and experimentally that electrons can also be pre-accelerated and
injected by the stochastic heating occurring at the collision of two
cross-polarized lasers and thus, a new regime of optical injection is
demonstrated. It is found that injection with cross-polarized lasers occurs at
higher laser intensities.Comment: 4 pages, 4 figure
Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors
The phase diagram of the layered organic superconductor
-(ET)Cu[N(CN)]Cl has been accurately measured from a
combination of H NMR and AC susceptibility techniques under helium gas
pressure. The domains of stability of antiferromagnetic and superconducting
long-range orders in the pressure {\it vs} temperature plane have been
determined. Both phases overlap through a first-order boundary that separates
two regions of inhomogeneous phase coexistence. The boundary curve is found to
merge with another first order line related to the metal-insulator transition
in the paramagnetic region. This transition is found to evolve into a crossover
regime above a critical point at higher temperature. The whole phase diagram
features a point-like region where metallic, insulating, antiferromagnetic and
non s-wave superconducting phases all meet.Comment: 4 pages, 6 figures, Revte
Early out-of-equilibrium beam-plasma evolution
We solve analytically the out-of-equilibrium initial stage that follows the
injection of a radially finite electron beam into a plasma at rest and test it
against particle-in-cell simulations. For initial large beam edge gradients and
not too large beam radius, compared to the electron skin depth, the electron
beam is shown to evolve into a ring structure. For low enough transverse
temperatures, the filamentation instability eventually proceeds and saturates
when transverse isotropy is reached. The analysis accounts for the variety of
very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter
- …
