264 research outputs found

    Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.</p> <p>Results</p> <p>We found a significant reduction of intracortical inhibition in the hemisphere contralateral to the lesioned nerve in the neuralgia patients. Intracortical inhibition in the ipsilateral hemisphere of neuralgia patients and in both hemispheres of osteoarthritis patients did not significantly differ from the control group. Disinhibition was significantly more pronounced in neuralgia patients with moderate/severe pain intensity than in patients with mild pain intensity, whereas the relative compound motor action potential as a parameter of nerve injury severity did not correlate with the amount of disinhibition.</p> <p>Conclusions</p> <p>Our results suggest a close relationship between motor cortex inhibition and chronic neuropathic pain in the neuralgia patients, which is independent from nerve injury severity. The lack of cortical disinhibition in patients with painful osteoarthritis points at differences in the pathophysiological processes of different chronic pain conditions with respect to the involvement of different brain circuitry.</p

    Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee

    Get PDF
    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments

    Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex

    Get PDF
    Evidence by functional imaging studies suggests the role of left dorsolateral prefrontal cortex (DLPFC) in the inhibitory control of nociceptive transmission system. Repetitive transcranial magnetic stimulation (rTMS) is able to modulate pain response to capsaicin. In the present study, we evaluated the effect of DLPFC activation (through rTMS) on nociceptive control in a model of capsaicin-induced pain. The study was performed on healthy subjects that underwent capsaicin application on right or left hand. Subjects judged the pain induced by capsaicin through a 0–100 VAS scale before and after 5 Hz rTMS over left and right DLPFC at 10 or 20 min after capsaicin application in two separate groups (8 subjects each). Left DLPFC-rTMS delivered either at 10 and 20 min after capsaicin application significantly decreased spontaneous pain in both hands. Right DLPFC rTMS showed no significant effect on pain measures. According to these results, stimulation of left DLPFC seems able to exert a bilateral control on pain system, supporting the critical antinociceptive role of such area. This could open new perspectives to non-invasive brain stimulation protocols of alternative target area for pain treatment

    Short and Intense Tailor-Made Notched Music Training against Tinnitus: The Tinnitus Frequency Matters

    Get PDF
    Tinnitus is one of the most common diseases in industrialized countries. Here, we developed and evaluated a short-term (5 subsequent days) and intensive (6 hours/day) tailor-made notched music training (TMNMT) for patients suffering from chronic, tonal tinnitus. We evaluated (i) the TMNMT efficacy in terms of behavioral and magnetoencephalographic outcome measures for two matched patient groups with either low (≤8 kHz, N = 10) or high (>8 kHz, N = 10) tinnitus frequencies, and the (ii) persistency of the TMNMT effects over the course of a four weeks post-training phase. The results indicated that the short-term intensive TMNMT took effect in patients with tinnitus frequencies ≤8 kHz: subjective tinnitus loudness, tinnitus-related distress, and tinnitus-related auditory cortex evoked activity were significantly reduced after TMNMT completion. However, in the patients with tinnitus frequencies >8 kHz, significant changes were not observed. Interpreted in their entirety, the results also indicated that the induced changes in auditory cortex evoked neuronal activity and tinnitus loudness were not persistent, encouraging the application of the TMNMT as a longer-term training. The findings are essential in guiding the intended transfer of this neuro-scientific treatment approach into routine clinical practice

    The Temporal Development of Fatty Infiltrates in the Neck Muscles Following Whiplash Injury: An Association with Pain and Posttraumatic Stress

    Get PDF
    Radiological findings associated with poor recovery following whiplash injury remain elusive. Muscle fatty infiltrates (MFI) in the cervical extensors on magnetic resonance imaging (MRI) in patients with chronic pain have been observed. Their association with specific aspects of pain and psychological factors have yet to be explored longitudinally.44 subjects with whiplash injury were enrolled at 4 weeks post-injury and classified at 6 months using scores on the Neck Disability Index as recovered, mild and moderate/severe. A measure for MFI and patient self-report of pain, loss of cervical range of movement and posttraumatic stress disorder (PTSD) were collected at 4 weeks, 3 months and 6 months post-injury. The effects of time and group and the interaction of time by group on MFI were determined. We assessed the mediating effect of posttraumatic stress and cervical range of movement on the longitudinal relationship between initial pain intensity and MFI. There was no difference in MFI across all groups at enrollment. MFI values increased in the moderate/severe group and were significantly higher in comparison to the recovered and mild groups at 3 and 6 months. No differences in MFI values were found between the mild and recovered groups. Initial severity of PTSD symptoms mediated the relationship between pain intensity and MFI at 6 months. Initial ROM loss did not.MFI in the cervical extensors occur soon following whiplash injury and suggest the possibility for the occurrence of a more severe injury with subsequent PTSD in patients with persistent symptoms

    Glucocorticoid-Treated Mice Are an Inappropriate Positive Control for Long-Term Preclinical Studies in the mdx Mouse

    Get PDF
    Dmd(mdx) (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations.We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment.Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. CONCLUSIONS: IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients
    corecore