20 research outputs found

    Complementary roles for scavenger receptor A and CD36 of human monocyte-derived macrophages in adhesion to surfaces coated with oxidized low-density lipoproteins and in secretion of H2O2

    Get PDF
    Oxidized low-density lipoprotein (oxLDL) is considered one of the principal effectors of atherogenesis. To explore mechanisms by which oxLDL affects human mononuclear phagocytes, we incubated these cells in medium containing oxLDL, acetylated LDL (acLDL), or native LDL, or on surfaces coated with these native and modified lipoproteins. The presence of soluble oxLDL, acLDL, or native LDL in the medium did not stimulate H2O2 secretion by macrophages. In contrast, macrophages adherent to surfaces coated with oxLDL secreted three- to fourfold more H2O2 than macrophages adherent to surfaces coated with acLDL or native LDL. Freshly isolated blood monocytes secreted little H2O2 regardless of the substrate on which they were plated. H2O2 secretion was maximal in cells maintained for 4–6 d in culture before plating on oxLDL-coated surfaces. Fucoidan, a known ligand of class A macrophage scavenger receptors (MSR-A), significantly reduced macrophage adhesion to surfaces coated with oxLDL or acLDL. Monoclonal antibody SMO, which blocks oxLDL binding to CD36, did not inhibit adhesion of macrophages to oxLDL-coated surfaces but markedly reduced H2O2 secretion by these cells. These studies show that MSR-A is primarily responsible for adhesion of macrophages to oxLDL-coated surfaces, that CD36 signals H2O2 secretion by macrophages adherent to these surfaces, and that substrate-bound, but not soluble, oxLDL stimulates H2O2 secretion by macrophages

    New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments

    Get PDF
    The bone microenvironment is characterized by an intricate interplay between cellular and noncellular components, which controls bone remodeling and repair. Its highly hierarchical architecture and dynamic composition provide a unique microenvironment as source of inspiration for the design of a wide variety of bone tissue engineering strategies. To overcome current limitations associated with the gold standard for the treatment of bone fractures and defects, bioengineered bone microenvironments have the potential to orchestrate the process of bone regeneration in a self-regulated manner. However, successful approaches require a strategic combination of osteogenic, vasculogenic, and immunomodulatory factors through a synergic coordination between bone cells, bone-forming factors, and biomaterials. Herein, we provide an overview of (i) current three-dimensional strategies that mimic the bone microenvironment and (ii) potential applications of bioengineered microenvironments. These strategies range from simple to highly complex, aiming to recreate the architecture and spatial organization of cell-cell, cell-matrix, and cell-soluble factor interactions resembling the in vivo microenvironment. While several bone microenvironment-mimicking strategies with biophysical and biochemical cues have been proposed, approaches that exploit the ability of the cells to self-organize into microenvironments with a high regenerative capacity should become a top priority in the design of strategies toward bone regeneration. These miniaturized bone platforms may recapitulate key characteristics of the bone regenerative process and hold great promise to provide new treatment concepts for the next generation of bone implants

    Development Of Injectable Carbonate Apatite Bone Bstitute Based on Phasetransformation Of Gypsum and Calcium Hydroxide: Preliminary Studies on Factors Influencing Carbonate Apatite Synthesis

    No full text
    Bone tissue is one of the most frequently used tissues for transplantation. The use of autologous bone grafts is still considered to be the golden standard, but there are several major disadvantages in this technique, for example: (1) low availability of transplantable tissue. (2) postoperative morbidity. (3) lack of functional shape of the transplant. Therefore, the development of alternatives to autologous bone is a very relevant issue in biomedical sciences to support bone reconstructive surgery. Among the alternative materials, carbonate apatite (C-Ap) has been a most likely candidate for bone substitutes with a superior biodegradation. In view of this. our collaborative research has resulted in the development of hydroxyapatite or carbonate apatite monolith by treatment of gypsum and calcium hydroxide in C02 and phosphate solution. Injectable C-Ap is then becoming our next goal. The cement can be applied directly into a bone defect. and can be shaped and molded to fit the required shape of the bone defect. In addition, the bone regenerative capacity of this C-Ap cement can further be enhanced by the inclusion of degradable polymeric microparticles with bone growth stimulating factors. The aim of this study is to understand the effect of carbonate source. magnesium suppression, and aging time on the crystallinity of carbonate apatite synthesis. The result shows that both aging time and Mg suppression do not influence crystallinity shown from the XRD pattern and FTIR spectra. The carbonate source does not influence the XRD patterns as well. It is suggested in the next continuing studies have been running in our laboratories to find friendly and simple method of apatite synthesis to prepare biodegradable apatite composite for biomedical purposes. Key words: Gypsum, Calcium hydroxide, Carbonate apatite. Synthesis, Crystallinit

    Self‐Healing Materials are Coming of Age

    No full text
    Item does not contain fulltex

    Influence of microcapsule parameters and initiator concentration on the self-healing capacity of resin-based dental composites

    No full text
    Contains fulltext : 231608.pdf (Publisher’s version ) (Open Access

    Activity profiling of papain-like cysteine proteases in plants

    No full text
    Transcriptomic and proteomic technologies are generating a wealth of data that are frequently used by scientists to predict the function of proteins based on their expression or presence. However, activity of many proteins, such as transcription factors, kinases, and proteases, depends on posttranslational modifications that frequently are not detected by these technologies. Therefore, to monitor activity of proteases rather than their abundance, we introduce protease activity profiling in plants. This technology is based on the use of biotinylated, irreversible protease inhibitors that react with active proteases in a mechanism-based manner. Using a biotinylated derivative of the Cys protease inhibitor E-64, we display simultaneous activities of many papain-like Cys proteases in extracts from various tissues and from different plant species. Labeling is pH dependent, stimulated with reducing agents, and inhibited specifically by Cys protease inhibitors but not by inhibitors of other protease classes. Using one-step affinity capture of bintinylated proteases followed by sequencing mass spectrometry, we identified proteases that include xylem-specific XCP2, desiccation-induced RD21, and cathepsin B- and aleurain-like proteases. Together, these results demonstrate that this technology can identify differentially activated proteases and/or characterize the activity of a particular protease within complex mixtures

    Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    No full text
    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric ( approximately 50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with CaP-coated coated nanogrooves display enhanced in vitro mineralization as compared to unmodified controls or substrates modified with either nanogrooves or CaP coatings. However, our results also indicated that acellular mineralization assays are not necessarily predictive for biological performance. STATEMENT OF SIGNIFICANCE: The manuscript describes the possibility to combine the mechanical properties of nanosized topographies with the biochemical properties of a calcium phosphate based coating for improvement of surface mineralization. Interestingly, our results demonstrate that further incubation of our surfaces in SBF type media allowed all surfaces to mineralize rapidly to a high extent. Moreover we prove that nanotexture be used to can stimulate and organize mineralization and that the combination surface of a CaP coating and a nanotexture has the potential to be effective as a bone-implant surface. Such experiments will be of considerable interest to those in the research community and industry, who are focusing on bio-mineralization processes and optimization of modern bone-implants

    Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    No full text
    Item does not contain fulltextTo prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver nanoparticles were distributed homogeneously throughout the fibers, and a fast release of chlorhexidine in 2days and a sustained release of silver ions for up to 28days. The antibacterial efficacy of the membranes against Staphylococcus aureus showed that the membranes exhibited an obvious inhibition zone upon loading with either chlorhexidine (20mug or more per membrane) or AgNO3 (1 and 5wt% to polymer). Furthermore, long-term antibacterial effect up to 4days was verified using membranes containing 5wt% AgNO3. The results suggest that the membranes have strong potential to act as an active antibacterial dressing for local delivery of antibacterial agents to prevent PDAIs
    corecore