14 research outputs found

    Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    Get PDF
    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis

    Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    Get PDF
    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and anisotropy is challenging, because different collagen networks may yield equal qPLM results. We created a model and used the linear optical behavior of collagen to construct a Jones or Mueller matrix for a histological cartilage section in an optical qPLM train. Histological sections of tendon were used to validate the basic assumption of the model. Results show that information on collagen densities is needed for the interpretation of qPLM results in terms of collagen anisotropy. A parameter that is independent of the optical system and that measures collagen fiber anisotropy is introduced, and its physical interpretation is discussed. With our results, we can quantify which part of different qPLM results is due to differences in collagen densities and which part is due to changes in the collagen network. Because collagen fiber orientation and anisotropy are important for tissue function, these results can improve the biological and medical relevance of qPLM results

    A model study of muscle forces and joint-force direction in normal and dysplastic neonatal hips

    Get PDF
    Orthopaedic treatment of congenital hip dysplasia does not always give the desired result. With the present model, prediction of the effects of various treatments on the force direction in the hip joint could help to improve and select treatment (the force direction is presumed to control the collum growth direction). The model contains three-dimensional mathematical descriptions of all muscles passing the hip joint, for various degrees of femoral dysplasia, and for various hip postures. Muscles run straight or curve round some skeletal parts. Muscle forces (all isometric) are calculated from muscle mass, density, pennation angle, mean fibre length, muscle elongation, and assumed activation levels. The latter serve as parameters for optimization. Resting lengths are taken from an assumed fetal posture, and from the observed neonatal posture. Differences between force directions before and after birth, as calculated with the model, agree with collum direction changes described by von Lanz and Mayet (1953).</p

    An experimental setup for the measurement of forces on a human cadaveric foot during inversion

    Get PDF
    An experimental setup was developed for statically measuring seven vertical and three horizontal reaction forces on the foot. In the setup, the leg can be simultaneously loaded (1) by a vertical force, (2) by an externally applied axial moment, and (3) by simulated muscle forces. The foot is free to invert under influence of the external loads. Statical analysis and test experiments were used for evaluation. The setup can be used in combination with Roentgen photogrammetry to measure bone positions simultaneously with forces.</p

    Estimation of stem attributes using a combination of terrestrial and airborne laser scanning

    Get PDF
    Properties of individual trees can be estimated from airborne laser scanning (ALS) data provided that the scanning is dense enough and the positions of field-measured trees are available as training data. However, such detailed manual field measurements are laborious. This paper presents new methods to use terrestrial laser scanning (TLS) for automatic measurements of tree stems and to further link these ground measurements to ALS data analyzed at the single tree level. The methods have been validated in six 80 × 80 m field plots in spruce-dominated forest (lat. 58°N, long. 13°E). In a first step, individual tree stems were automatically detected from TLS data. The root mean square error (RMSE) for DBH was 38.0 mm (13.1 %), and the bias was 1.6 mm (0.5 %). In a second step, trees detected from the TLS data were automatically co-registered and linked with the corresponding trees detected from the ALS data. In a third step, tree level regression models were created for stem attributes derived from the TLS data using independent variables derived from trees detected from the ALS data. Leave-one-out cross-validation for one field plot at a time provided an RMSE for tree level ALS estimates trained with TLS data of 46.0 mm (15.4 %) for DBH, 9.4 dm (3.7 %) for tree height, and 197.4 dm3 (34.0 %) for stem volume, which was nearly as accurate as when data from manual field inventory were used for training

    No associations between single nucleotide polymorphisms in corticoid receptor genes and heart rate and cortisol responses to a standardized social stress test in adolescents: the TRAILS Study

    Get PDF
    Previously, sequence variation in the glucocorticoid (GR) and mineralocorticoid (MR) receptor genes (NR3C1 and NR3C2, respectively) have been found to be associated with physiological stress responses to social stress tests in small samples of adult men and oral contraceptives (OC) using women. Associations between single nucleotide polymorphisms (SNPs) in the GR (23EK-rs6190, 9beta-rs6198, BclI-rs4142324) and the MR gene (I180V-rs5522 and -2G/C (rs2070951) with cortisol and heart rate responses to a performance-related social stress task (public speaking and mental arithmetic) were examined in a large sample (n = 553) of adolescents (15-17 years). To make comparisons with previous findings, associations were tested in boys (n = 277), free-cycling (FC) girls (n = 183) and OC users (n = 93). None of the previously reported associations in adults could be replicated in this large adolescent sample. Explanations for non-replication are discussed
    corecore