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Abstract 
Properties of individual trees can be estimated from airborne laser scanning (ALS) data 
provided that the scanning is dense enough and the positions of field-measured trees are 
available as training data. However, such detailed manual field measurements are 
laborious. This paper presents new methods to use terrestrial laser scanning (TLS) for 
automatic measurements of tree stems and to further link these ground measurements to 
ALS data analyzed at the single tree level. The methods have been validated in six  
80 × 80 m field plots in spruce-dominated forest (lat. 58° N, long. 13° E). In a first step, 
individual tree stems were automatically detected from TLS data. The root mean square 
error (RMSE) for DBH was 38.0 mm (13.1%) and the bias was 1.6 mm (0.5%). In a 
second step, trees detected from the TLS data were automatically co-registered and 
linked with the corresponding trees detected from the ALS data. In a third step, tree 
level regression models were created for stem attributes derived from the TLS data 
using independent variables derived from trees detected from the ALS data. Leave-one-
out cross-validation for one field plot at a time provided an RMSE for tree level ALS 
estimates trained with TLS data of 46.0 mm (15.4%) for DBH, 9.4 dm (3.7%) for tree 
height, and 197.4 dm3 (34.0%) for stem volume, which was nearly as accurate as when 
data from manual field inventory were used for training. 

 

Keywords: Airborne Laser Scanning, Terrestrial laser scanning, forest inventory,  
single tree detection 
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1 Introduction 

Modern remote sensing techniques such as airborne laser scanning (ALS) have 
made it possible to automatically delineate individual tree crowns (Hirschmugl 
2008). Using a Canopy Height Model (CHM) derived from the ALS data, 
delineation can be done by identifying canopy height maxima and dividing the 
canopy into tree crown segments (Hyyppä et al. 2001; Persson et al. 2002), by 
fitting cone-shaped objects using a modified Hough transform (Van Leeuwen 
et al. 2010), or by spatial wavelet analysis (Falkowski et al. 2006). The 
delineation can also be done by segmentation of voxels or by clustering in 
three dimensions (Gupta et al. 2010; Reitberger et al. 2009). Such single tree 
analysis can provide tree height estimates and if field data from the laser 
scanned area are available, statistical models can be created to estimate 
variables such as diameter at breast height (DBH) and stem volume for the 
dominant and subdominant trees in coniferous-dominated boreal forests 
(Persson et al. 2002). 

To connect the trees detected from the ALS data with the corresponding 
trees in the field, tree positions and stem attributes measured in the field are 
also required. This is usually achieved by allocating field plots in the forest 
area and measuring the position and DBH of all trees and the height of a 
subsample of trees (Vauhkonen et al. 2010). The measurements are done 
manually and even though electronic equipment may be used to save the 
measurements automatically, the field workers still have to measure each 
individual tree. Terrestrial laser scanning (TLS) offers the potential to automate 
tree position and stem diameter measurements. TLS is a quickly developing 
technique that provides highly accurate three-dimensional data consisting of 
distance measurements from the scanner to the surrounding surfaces.  

The combination of data from TLS and ALS provides a possibility to 
implement a forest inventory system with minimal need for manual 
measurements. TLS and ALS have been combined to estimate canopy structure 
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at the plot level (Hilker et al. 2010; Lovell et al. 2003). In the present study, 
TLS and ALS are combined at tree level. An early version of this study is 
presented in Lindberg et al. (2010). One of the few other studies where TLS 
and ALS data are combined at tree level is Fritz et al. (2011) who found that 
approximately one third of the trees detected from TLS could be linked to trees 
detected from ALS. The outcome of the linking depends partly on the 
algorithms used to detect trees from TLS and ALS as well as the forest density 
and structure. Combination of TLS and ALS data requires co-registration of 
the data sources. Since GPS positions measured under a canopy are less 
accurate, the positions of the field-collected data must be adjusted; this may be 
done by matching the tree positions (Olofsson et al. 2008). When using TLS 
data as field measurements, co-registration must take into account that the TLS 
data will have zones that are obscured from the scanner. 

The most common way to estimate positions and stem diameters from TLS 
data is to first find approximate tree positions and diameters using either 
manual detection (Hopkinson et al. 2004), a clustering algorithm (Maas et al. 
2008; Bienert et al. 2007; Király and Brolly 2007), skeletonization (Gorte and 
Pfeifer 2004), or the Hough transform (Aschoff et al. 2004), and then fit circles 
along the tree stems using least squares regression (Pfeifer et al. 2004; Henning 
and Radtke 2006; Watt and Donoghue 2005). Wezyk et al. (2007) modeled 
tree stems from TLS data by fitting convex hulls to the laser reflections and 
estimating DBH and basal area from the convex hulls. Thies et al. (2004) used 
TLS data captured at multiple positions around the centre of a sample plot to 
model tree stems with overlapping cylinders. The cylinders were fitted from 
the root of the tree and up along the stem until a preselected maximum root 
mean square error was exceeded. It can be expected that inventories with 
terrestrial laser scanners will also offer the opportunity to determine timber 
quality of standing trees, for example, using detailed models of tree stems and 
branches (e.g., Pfeifer and Winterhalder 2004). 

The objective of this study is to present and validate a processing chain 
where TLS data are used to automatically train ALS estimates at the single tree 
level. Among the results presented from this processing chain are: i) validation 
of a new automated method to estimate DBH from TLS data, and ii) 
comparison of the accuracy of single tree level ALS based estimates of stem 
diameter and stem volume when trained with TLS data as opposed to ALS 
based estimates trained with manual field measurements. 
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2 Material 

2.1 Study Area 

The study area is located in the Remningstorp estate in southern Sweden (lat. 
58° N, long. 13° E). The estate covers 1200 ha of forest land on relatively 
fertile sites. The dominant tree species in the area is Norway spruce (Picea 
abies) followed by birch (Betula spp.) and Scots pine (Pinus sylvestris). 

2.2 Manual Field Inventory 

Manual field measurements were done to collect validation data. Six 
rectangular 80 × 80 m field plots were allocated (table 1) during the Autumn of 
2006 in Norway spruce dominated forest stands with almost no understory.  

Table 1. Summary of manual field measurements. 

Plot Number 
of trees 

Species proportion  
of basal area (%) 

DBH (mm) 

  Spruce Pine Deciduo
us  

10th 
percen-
tile 

Mean 90th 
percent-
tile 

1 369 87 10 3 230 322 411 
2 424 99 0 1 222 297 386 
3 357 79 0 21 150 290 422 
4 410 99 0 1 173 237 302 
5 384 98 0 2 130 233 315 
6 332 98 0 2 180 322 452 
Mean 379 93 2 5 178 268 395 
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For all trees with DBH ≥ 30 mm within the field plots, the tree species were 
recorded and the diameters were measured on two perpendicular axes using a 
caliper with mm accuracy. The DBH of each tree was calculated as the average 
of these measurements. For a subsample of the trees, height was measured 
using a hypsometer with sub-meter accuracy. The positions of reference points 
near the field plots were measured with cm accuracy using a Leica 500 Real 
Time Kinematic (RTK) GPS. The positions of the trees were registered relative 
to the reference points using a Leica TPS1100 total station. Stem volume was 
calculated with functions by Brandel (1990) for the subsample of trees where 
height was field-measured. The birch volume function was used for all 
deciduous trees. To estimate the stem volume of all trees, linear regression 
models were fitted for spruce (RMSE 85.2 dm3 (15.3%) at tree level), pine 
(RMSE 87.6 dm3 (12.6%)), and deciduous trees (RMSE 45.2 dm3 (43.6%)) 
(equation 1) 

 
 (1) 

 
where Vj is the stem volume of tree j and DBHj is the DBH of tree j. 

2.3 Airborne Laser Scanning Data 

The acquisition of airborne laser scanning data was performed on April 24, 
2007 using a helicopter-borne TopEye MKII ALS system with a wavelength of 
1064 nm. The flying altitude was 130 m above ground level. The first and last 
returns were saved for each laser pulse and the average laser return density was 
30 m-2. Laser returns were classified as ground or non-ground using a 
progressive Triangular Irregular Network (TIN) densification method 
(Axelsson 2000; Axelsson 1999) implemented in the TerraScan software 
(Soininen 2004). The ground returns were used to derive a Digital Elevation 
Model (DEM) with 0.5 m raster cells. 

2.4 Terrestrial Laser Scanning Data 

The acquisition of TLS data was performed in September 2006 using an 
Optech ILRIS-3D scanner with a wavelength of 1540 nm. The laser scanner 
has a 40º × 40º field of view and the beam divergence is 170 μrad. One 
centrally located scanner position was used in each field plot. The scan density 
was 270 μrad horizontally and vertically. Five or more trees around each 
scanner position were marked with velvet and registered relative to the 
reference points from the manual field inventory using a Leica TPS1100 total 
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station. The complete 360º scenes in the horizontal plane were collected by 
scanning one scene at a time and rotating the scanner while making sure that 
the scenes overlapped. One tree on the left and right edges of each scene was 
marked with velvet to enable rectification of the scenes. The laser reflections 
were rectified to create a complete point cloud for every scanner position and 
the laser reflections were geo-referenced using the software Polyworks 
(InnovMetric 2010). At least three common points were selected in each pair of 
scenes. The software rectified the scenes against each other pair-wise, then 
another scene was added and new common points selected. In a final step, all 
scenes were rectified simultaneously. 
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3 Methods 

3.1 Outline 

The method developed and validated in this study is an approach to a forest 
inventory system based on single tree analysis of ALS data where the 
diameters and positions of the tree stems used as training data are derived 
automatically from TLS (figure 1). The method is briefly outlined here and 
described in detail in following sections. 

The TLS data were processed by using the Hough transform (Gonzalez and 
Wintz 1987) to find initial estimates of the positions and diameters of the tree 
stems. These estimates were used as initial values to fit circles along the tree 
stems to estimate the DBH. The result was validated against the manual field 
inventory data. 

The ALS data were segmented into tree crowns. For each segment, features 
based on the ALS data were extracted. The segments were matched with the 
corresponding tree stems detected from the TLS data. The heights of the trees 
were estimated from the ALS segments calibrated with the subsample of trees 
where the height was field-measured. Stem volume was then calculated using 
DBH estimated from TLS data and the estimated tree height. This was done 
both with a model based only on spruce trees as well as with a weighted model 
based on trees from all species. Regression models were created with the DBH, 
tree height and stem volume as dependent variables and the features from the 
ALS segments as independent variables. 

Finally, the regression models were used to estimate DBH, tree height and 
stem volume from ALS data. The result was matched with and validated 
against the manual field inventory data. The estimation of the regression 
models’ parameters and the validation was done using leave-one-out cross-
validation for one field plot at a time. 
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Figure 1. Outline of the method used in this study. 
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3.2 Processing of TLS data 

3.2.1 Derivation of a DEM 

To know the height above the ground of the estimated stem diameters, a DEM 
must be derived from the TLS data. An algorithm was developed for this 
purpose. The DEM was extracted using two rasters with different cell sizes. 
The smaller raster cell size was 1 m, which was the intended final DEM raster 
cell size. The larger raster cell size was 10 m, which was large enough to 
contain laser reflections from several trees or large open ground patches. The 
larger raster cells had a high probability of containing a laser reflection from 
the ground whereas the smaller raster cells might not contain a ground 
reflection. In both rasters, the minimum height value was saved for each cell, 
giving two elevation models: one with 1 m raster cells and one with 10 m raster 
cells. Some cells in both rasters had missing data, which were recorded in a 
mask. To evaluate whether the elevation value in a smaller cell belonged to the 
ground or to vegetation, it was compared with the larger raster cell elevation 
model. At the position of the smaller raster cell, a height value was interpolated 
from the height values of the three closest larger neighbouring cells. These 
three points in 3D space defined a plane used as an approximate estimate of the 
height and slope of the terrain. To allow for local variations, 1 m was added to 
the interpolated height value, giving a threshold for accepting a value as 
ground. If the height value of the smaller raster cell was lower than this 
threshold, it was assumed to belong to the ground. Otherwise it was assumed 
that the height value belonged to vegetation and it was discarded from further 
calculations. At this stage, the 1 m raster contained ground height values and 
some empty raster cells with missing data. To fill the empty raster cells with 
estimated height values, a weighted average of the filled neighbouring raster 
cells was used. A cell was considered to be a neighbour if no other filled cell 
was in between it and the empty cell, giving free sight in a straight line. Only 
filled cells that existed before the fill algorithm started were considered when 
finding neighbours. The weight was set to the inverse cube of the distance to 
the cell. The end product of this process was a 1 m cell size DEM raster 
derived from the TLS data. 

3.2.2 Initial estimation of tree stems 

The algorithm used for estimating tree stems (Lindberg et al. 2010) requires 
initial positions and stem diameter classes as start values for the stem diameter 
estimation. The height value of each laser reflection in the TLS dataset was 
subtracted by the DEM derived from the TLS data. The coordinate system was 
chosen with the positive z-axis pointing upwards and the x- and y-axis in the 
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horizontal plane. Stem projection images were made by projecting the laser 
reflections down to an image in the horizontal plane with a pixel size of 5 cm. 
The pixel size was chosen to balance speed and accuracy. Initially all the pixels 
in the stem projection image were set to zero. A height span between 1-2 m 
above the ground was chosen to exclude most of the ground vegetation and the 
higher and denser parts of the canopies. Every laser reflection within this 
height span increased the pixel value of the stem projection image by one, 
giving high pixel values where the laser reflections were dense and low pixel 
values where the laser reflections were sparse. After this operation, the stem 
projection image contained views of the tree stems from above where most of 
the branches in the canopy and low ground vegetation were not visible. Tree 
stems in this image were shaped like arcs facing the position of the scanner 
(figure 2). Parts of low-positioned branches and foliage were visible as noise in 
the image. 

 
Figure 2. Image of TLS data projected to the x-y plane shown as white and gray pixels. Gray 
circles are the probable tree position candidates of different diameter classes. The initial tree 
positions chosen by the algorithm are marked by a white X. 
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To compensate for the fact that the density of laser reflections decreases 
with distance from the scanner, the stem projection image was normalized by 
increasing the pixel values with increased distance from the scanner. To 
remove noise, a threshold was applied to the stem projection image before 
further processing. 

Assuming that the tree stems were shaped like arcs facing towards the 
scanner in the stem projection image (figure 2), the Hough transform 
(Gonzalez and Wintz 1987) was used to find probable positions of the trees. 
This was done for a pre-chosen number of diameter classes (20, 30, 40, and 50 
cm) which were saved in different layers of a tree stem center image with a 
pixel size of 5 cm. 

If a pixel originated from the edge of a tree stem with the diameter of a 
chosen class, the possible position of the tree stem’s center formed an arc with 
equal diameter. For this arc, the edge was facing away from the scanner. For 
every pixel value > 0, an arc with this value was added to a layer in a tree stem 
center image (figure 3). After processing all filled pixels in the stem projection 
image, the positions in the tree stem center image with high pixel values had a 
high probability of being a stem center and positions with low pixel values had 
a low probability of being a stem center. 

 
Figure 3. Tree stem center images that are the Hough transform of the stem projection image 
(figure 2) for different diameter classes. If a stem is found, a butterfly shaped pattern is visible in 
the tree stem center image where the middle of the tree stem has the highest pixel value. In this 
image three stems are visible. 

This tree stem center image contained noise that had to be removed. For 
instance, thick arcs gave a high probability for several diameter classes. A few 
single pixels with high values could also produce a probable arc, so there was a 
need to measure how continuous an arc was. 

Thick arcs must be reduced into one diameter class. The assumption was 
that no pixels were filled inside the innermost diameter in the stem projection 
image, since the laser reflections cannot penetrate the stem of the tree. For 
every diameter class and position, the algorithm summed all pixel values inside 
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the chosen diameter in the stem projection image, referred to as the 
innerRadiusSum. If this sum was large, the current diameter class was probably 
not the innermost diameter.  

The ratio between the sum of pixels for an outer and an inner arc with 
opening angle θ and equal average pixel values follows equation 2. 

 
 (2) 

 
The value 2 in the denominator is included because the difference between two 
consecutive diameter classes is two pixels. This ratio was used to determine 
how large the innerRadiusSum would be if the inner arc was filled. In that case 
the innerRadiusSum of the inner arc multiplied with the arcLengthRatio would 
give the same value as the innerRadiusSum of the outer arc. The pixel values 
of positions where the diameter class was not the innermost diameter were 
reduced when equation 3 was applied. The factor 3 in equation 3 ensured that 
the average pixel value of the current diameter class had to be at least three 
times larger than the inner diameter class to give a positive value in the tree 
stem center image. In the case where the current diameter class was the 
innermost diameter, the pixel value was unchanged. This method also removed 
noise that covered a large area. 

 

   (3) 
 
To obtain a value of how continuous the arc was, a ratio between the number 
of pixels in an arc of that diameter class and the number of filled pixels in the 
current arc in the stem projection image was calculated (equation 4). This was 
automatically calculated for every pixel position and every diameter class in 
the tree stem center image. 

 
 (4) 

 
If the arc was discontinuous, the ratio was lower than one, which reduced the 
pixel value even further (equation 5). 

 

 (5) 
 
Once the noise was reduced, the modified pixel values for each diameter class 
were saved in the tree stem center image. All negative values were set to zero.  

For every diameter class, a watershed algorithm was applied to the tree 
stem center image giving local pixel value maxima. For continuous areas with 
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equal pixel values, only the centermost pixel position was saved. Every local 
maximum position for all diameter classes was considered to be a probable 
stem center. If two tree stem positions were within each other’s radii, they were 
considered to be candidates to the same position. Several trees could be linked 
in this way as a group of candidates. To find the most probable tree stem 
position and diameter, the candidate with the highest pixel value in the tree 
stem center image was chosen. If several trees had the same pixel value, the 
largest tree was chosen. The chosen tree stem positions and diameter classes 
were used as initial estimates for the final estimation of stem positions and 
diameters. 

3.2.3 Estimation of stem diameters 

Diameters were estimated along each stem by fitting circles in two steps. In the 
first step, the resulting position and diameter from the initial estimation were 
used to select a set of laser reflections, and circles were then fitted to the laser 
reflections in horizontal slices. In the second step, the position and diameter of 
the fitted circles from the first step were used to select a new set of laser 
reflections and new circles were fitted to those laser reflections (figure 4 and 
5). This is similar to fitting cylinders along the stem (Thies et al. 2004) 
although the second step was added to make the estimation less sensitive to the 
local influence of branches. 

 
Figure 4. Laser reflections selected in the first step (a) and the second step (b) for one tree stem 
shown in three dimensions. The vertical lines are the limits for selecting laser reflections in the 
respective steps and the horizontal circles are the result of the estimation in the respective steps. 
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Figure 5. Laser reflections in a horizontal slice of 50 cm height centered around 1.3 m above the 
ground selected in the first step (a) and the second step (b) for one tree stem shown in two 
dimensions. The dotted circles are the limits for selecting laser reflections in the respective steps 
and the solid circles are the result of the estimation at 1.3 m above the ground in the respective 
steps. 

In the first step, all laser reflections that fulfilled equation 6 were selected 
 

 (6) 
 
where (cx,init,cy,init) is the midpoint of the stem and dinit is the stem diameter 
given by the initial estimation from the Hough transform. 

The laser reflections were divided into horizontal slices, each with a height 
of 50 cm. For each slice, a circle was fitted (equation 7). 

 
  (7) 

 
This was done by minimizing the sum of squared errors, E (equation 8), 

 
 (8) 

 
numerically by trying combinations of d, cx and cy (equations 9-11) 
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 (9) 
 

 (10) 
 

 (11) 
 
where S and k are unit-less. The initial values of d0, cx,0 and cy,0 were set to 
those given by the initial estimation. The search ratio S was initially set to S = 
5 and the combination of d, cx and cy with the smallest E was chosen. The 
search ratio was then divided by two, and new combinations of d, cx and cy 
were tried with d0, cx,0 and cy,0 set to the chosen values from the previous 
search ratio. This was repeated three times to estimate d, cx and cy for each 
slice. 

The maximum value of the stem diameter of the lowest horizontal slice was 
based on the stem diameter given by the initial estimation (equation 12). 

 
   (12) 

 
For subsequent slices, maximum values of the stem diameter were based on the 
mean value  of the stem diameters estimated for the lower slices (equation 
13). 

 
  (13) 

 
 
In this way, circles with d, cx and cy were fitted along the whole stem. 

The dependencies between the height above the ground, z, and the 
estimated values of d, cx and cy, respectively, were approximated as linear 
functions d(z), cx(z) and cy(z) using linear regression. The initial values for the 
second step were d(z), cx(z) and cy(z) as estimated from the first step. In the 
second step, all laser reflections that fulfilled equation 14 were selected. 

 
 (14) 

 
If less than 1000 laser reflections fulfilled the criterion, d(z) was increased by 
1/10 of the original value and a new set of laser reflections was selected. This 
was repeated until at least 1000 laser reflections fulfilled the criterion. 

The laser reflections were divided into horizontal slices and circles were 
fitted as in the first step. S was initially set to 1. The maximum value of the 
stem diameter of the lowest horizontal slice was based on the stem diameter 
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estimated in the first step and the minimum distance, Dmin, between the laser 
reflections 0-10 m behind the tree stem (equation 15). 

 
 

 (15) 
 
 
For subsequent slices, maximum values of the stem diameter were computed 
from equation 13. Finally, the dependency between the height above the 
ground z and the stem diameter d was approximated as a linear function with 
linear regression. The function was used to estimate the stem diameter at 1.3 m 
above the ground (i.e., the DBH). 

Some factors that may affect the accuracy of the estimates are the distance 
from the scanner, the number of laser reflections from the tree stem, the 
residual of the fitted circle, and if the tree stem is partly hidden behind another 
object. The last factor can be determined when all the tree stems visible from 
the scanner in one field plot are estimated and the circle sectors hidden behind 
the tree stems can be derived. Based on a combination of these factors, it is 
possible to determine conditions to include or exclude a tree stem in the 
training data. 

To reduce the number of tree stems for which the estimation had a great risk 
of being inaccurate, the training data included only tree stems ≤ 40 m from the 
scanner (case II in the Results section) and with a set of laser reflections with 
width ≥ 0.5 × d and ≤ 1.5 × d (figure 6) (case III in the Results section). The 
restrictions were empirically based on the accuracy of the DBH estimates. 

 
Figure 6. Examples of sets of laser reflections and fitted circles. (a) Width ≥ 0.5 × d and  
≤ 1.5 × d, (b) width < 0.5 × d, and (c) width >1.5 × d. 



18 

3.3 Processing of ALS data 

3.3.1 Delineation of tree crowns 

The segmentation method used for tree crown delineation was based on 
geometric tree crown models (Holmgren et al. 2010) and rasters with 0.25 m 
cells. A canopy height model (CHM) was first created. A correlation surface 
(CS) was then calculated where a raster cell value was set to the maximum 
correlation found using tests with geometric tree models having the origin 
placed at the centre of the raster cell. For each raster cell, different geometric 
models (i.e., generalized ellipsoids; Pollock 1996) were used to calculate the 
height of the model surface (h). The correlation was then calculated between z-
values of laser returns and h-values calculated for the x- and y-values of the 
laser returns. The model height was set to the value of the CHM and different 
values of the radius rGER were tested, namely rGER = 0.5 m, 0.7 m, and rmax, 
where rmax was the maximum expected radius set as a proportion of model 
height. The CS was smoothed 3 times with a 3 × 3 Gaussian filter and then 
used for the segmentation. To do this, a starting point (i.e., a seed) was placed 
in each raster cell with a non-zero CHM value and with a positive CS value. 
For each seed, the current location was updated to the neighbouring cell with 
the highest value of the smoothed CS and this was repeated until the position 
could not be updated because a local maximum of the smoothed CS had been 
reached. The seeds with the same final local maximum defined a segment. The 
next step was to merge segments with the aim of removing segments that only 
covered part of a tree crown. For each segment, geometric models were used to 
decide if the segment should be merged or not to a neighbouring segment. The 
model origin was placed in the raster cell having the maximum value of the CS 
within the tested segment (i.e., the segment centre) and a test value was 
calculated using only laser data within that segment. The model was also 
placed at a neighbouring segment centre and a test value was calculated using 
only laser data from within the tested segment. If the test at the tested segment 
centre yielded a higher value than a test at any neighbouring segment centre, 
the segment was not merged; otherwise, the segment was merged with the 
neighbouring segment for which the highest test value was calculated. The test 
value was the weighted correlation between z-values of the laser returns and h-
values calculated for the x- and y-values of the laser returns, where the weight 
was distance above ground level multiplied by a penalty factor that was a 
function of the difference between the predicted and observed ratio of radius to 
model height. In this study, classes of the value obtained by dividing the 
standard deviation with the laser-derived maximum height within a segment 
were used to predict the ratio of radius to model height. In a training phase 
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where the tree positions were known on field plots, different ratios were tested. 
For each class, the ratio that yielded the highest proportion of one tree within a 
segment was chosen and then used in the prediction phase. 

3.3.2 Extraction of features 

The maximum height value (HALS) of the CHM within the segment was used 
for estimation of tree height. The 10th, 20th, … percentile of laser returns 
inside the segment (p10, p20, ..) were derived. The crown area of an individual 
tree was derived by counting the number of raster cells in a segment and the 
width (WALS) of a segment was then derived assuming that a tree crown was 
circular. 

3.4 Combination of ALS and TLS data 

3.4.1 Co-registration of data sources 

To co-register the ground measurements with aerial data, the position image 
method by Olofsson et al. (2008) was further developed. In the original 
method, two tree list-datasets with tree positions and size parameters were co-
registered by cross-correlating position images and linking the trees with the 
smallest treetop distance. However, TLS data from an area with trees have 
zones that are obscured from the scanner, which complicates automatic co-
registration between tree positions found in the TLS and ALS data. The 
obscured zones were therefore masked from the field plot depending on where 
tree stems were found in the TLS data; only the parts of the field plot visible 
from the terrestrial laser scanner were used for correlation. The tree linking 
algorithm was the same as in (Olofsson et al. 2008). 

3.4.2 Estimation of forest variables 

DBH, tree height and stem volume were estimated with regression models 
from the ALS segments. The parameters of the regression models were 
estimated using training data derived from TLS data and also, as a comparison, 
using training data from the manual field inventory. The result was two 
different sets of estimated parameters for each regression model. The training 
data derived from the TLS data included tree stems ≤ 40 m from the scanner 
and a set of laser reflections with width ≥ 0.5 × d and ≤ 1.5 × d. The training 
data from the manual field inventory included tree stems in a circle ≤ 40 m 
from the centre of the field plot to make co-registration with ALS data possible 
(Olofsson et al. 2008). 
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The following regression model was used to estimate the DBH of tree j 
(equation 16) 

 

   (16) 
 
where DBHj is the field-measured DBH (from TLS data or caliper) of tree j, 
HALS,j is the height of the ALS segment, WALS,j is the width of the ALS segment, 
and p70,j is the 70th percentile of laser returns inside the segment. All variables 
in the model had a p-value ≤ 0.001 and the variance inflation factor (VIF) was 
≤ 3.5. The estimates were corrected for logarithmic bias (Holm 1977). 

The following regression model was used to estimate the height of tree j 
(equation 17) 

 
  (17) 

 
where Hj is the field-measured height of tree j. The p-value was ≤ 0.001. The 
regression models for the tree height were based on the subsample of trees 
where the height was measured in field. For the trees detected from TLS data, 
the tree height of the closest manually measured tree within 0.5 m was chosen. 

The stem volume was calculated from the DBH, estimated from TLS data 
or measured with a caliper, and the tree height estimated from the ALS data 
(Brandel 1990). The following regression model was used to estimate the stem 
volume of tree j (equation 18) 

 

   (18) 
 
where Vj is the field-measured stem volume of tree j. All variables in the model 
had a p-value ≤ 0.002 and the VIF was ≤ 3.5. The estimates were corrected for 
logarithmic bias (Holm 1977). For the trees detected from the TLS data, two 
different regression models were used to estimate stem volume. One model 
was based on spruce trees only and one model was based on all tree species. 
The volume of the latter model was calculated as a weighted mean of the stem 
volume for each tree species (pine, spruce and deciduous) with the same DBH 
and height, where the weights were proportional to the stem volume of each 
tree species in the training data. 
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3.5 Validation 

The root mean square error (RMSE) and bias were calculated for the estimated 
DBH, tree height and stem volume at tree level. The RMSE and bias for DBH 
were calculated as follows (equations 19-20) (corresponding expressions were 
used for tree height and stem volume) 

 
  (19) 

 
  (20) 

 
where DBHj is the manually measured and  is the estimated DBH of 
tree j and n is the total number of trees. 

This was done to validate the result of the estimation of DBH from TLS 
data and the result of the estimation of DBH, tree height and stem volume from 
ALS data trained with TLS data as well as with data from the manual field 
inventory.  

The DBH estimated from TLS data was validated against the closest 
manually measured tree within 0.5 m from the tree detected from TLS data. If 
the manually measured tree had a neighbour within 0.5 m, the tree was 
excluded from the validation. 

The estimates from ALS data were validated using leave-one-out cross-
validation. One field plot at a time was excluded from the dataset and the rest 
of the dataset was used as training data to estimate forest variables for the 
excluded field plot. The validation data were manually measured tree stems in 
a circle ≤ 40 m from the centre of the respective field plots to make co-
registration with ALS data possible (Olofsson et al. 2008). The tree height was 
validated only for the subsample of trees where the height was measured in 
field. The stem volume was validated only for spruce trees since two of the 
models were based only on spruce trees and the volume functions are species 
specific. The stem volume was validated against the stem volume from the 
manual field inventory. 
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4 Results 

4.1 Estimation of DBH from TLS data 

The RMSE of the DBH estimated from the TLS data (table 2 and figure 7) was 
lower when excluding trees more than 40 m from the scanner (II) and when 
excluding trees with an estimated diameter which was not realistic compared to 
the set of laser reflections (III). The lowest RMSE was achieved when both of 
these restrictions were imposed (IV). 

Table 2. RMSE and bias of DBH estimated from TLS data and validated against manual field 
measurements. Case I: All tree stems inside 80 × 80 m field plots; Case II: Tree stems ≤ 40 m 
from the scanner; Case III: Tree stems with a set of TLS reflections with width ≥ 0.5 × d and  
≤ 1.5 × d; Case IV: Restrictions from II and III. 

 Number 
of 
manually 
measure
d trees 

Number 
of trees 
found 
from 
TLS data 

Number 
of trees 
found 
from 
TLS data 
with 
manually 
measure
d tree 

Mean 
DBH 

RMSE Bias 

(mm) (mm) % (mm) % 

I 2276 1324 1032 290.7 38.0 13.1 1.6 0.5 
II 1832 1133 899 289.8 35.9 12.4 2.5 0.9 
III 2276 1274 1005 292.2 34.4 11.9 -0.2 -0.1 
IV 1832 1075 876 291.1 32.1 11.0 0.8 0.3 
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Figure 7. The residuals of DBH estimated from TLS data versus manually measured DBH for all 
tree stems (I in table 2). 

The RMSE and bias of DBH estimated from the TLS data varied for 
different tree species. RMSE was largest for spruce and smallest for deciduous 
trees (table 3). 

Table 3. RMSE and bias of DBH estimated from TLS data per tree species. Case I: All tree stems; 
Case II: Tree stems ≤ 40 m from the scanner; Case III: Tree stems with a set of TLS reflections 
with width ≥ 0.5 × d and ≤ 1.5 × d; Case IV: Restrictions from II and III. 

 Pine Spruce Deciduous 
 RMSE % Bias % RMSE % Bias % RMSE % Bias % 
I 12.4 -1.4 13.2 0.6 6.8 -1.6 
II 12.8 0.0 12.4 0.9 6.8 -1.4 
III 10.3 -2.7 11.8 0.0 6.7 -1.6 
IV 10.3 -1.5 11.0 0.3 6.8 -1.4 
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4.2 Combination of ALS and TLS data 

A greater proportion of trees detected from TLS data with large diameters 
could be linked to tree crowns delineated from ALS data as compared to trees 
with small diameters detected from TLS data. The mean DBH of all spruce 
trees detected from TLS data was 295.4 mm and the bias was 0.9 mm. The 
mean DBH of the spruce trees detected from TLS data that could be connected 
to tree crown segments in ALS data was 305.0 mm and the bias was 2.1 mm 
(figure 8). The mean DBH of the spruce trees detected from TLS data that 
could not be connected to tree crown segments in ALS data was 205.0 mm and 
the bias was -9.8 mm. 

 
Figure 8. The distribution of DBH for all spruce trees found from TLS data and the distribution of 
DBH for the subset of spruce trees found from TLS data that were used as training data. 

The RMSE and bias at tree level with trees detected from TLS data as 
training data were almost as low as when trees from the manual field inventory 
were used as training data (table 4 and figures 9-11). The training data included 
only tree stems that fulfilled restriction IV in table 2. The validation of the 
estimates from ALS data was done for the same trees for both sets of training 
data. The figures 9c, 10c, and 11c show the difference between the estimates 
with different training datasets versus the mean of the estimates with different 
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training datasets (Bland and Altman 1986). For DBH, the estimation with TLS 
data as training data resulted in a larger overestimation for small values and a 
larger underestimation for large values (i.e., the regression model with manual 
field inventory as training data fitted better; figure 9c). For tree height, the 
difference was very small between the estimates with different training datasets 
(figure 10c). The linear trends are due to the pair-wise differences between the 
linear models in the different field plots, which are results of the cross-
validation. For stem volume, the best result was achieved with trees detected 
from TLS data as training data and a weighted model based on all tree species 
(figure 11c). 

Table 4. DBH1 (equation 16), tree height2 (equation 17), and stem volume3 (equation 18) 
estimated from ALS data with trees found from TLS data as training data and trees from the 
manual field inventory as training data. 

Training data Number of 
trees in 
training 
data 

RMSE Bias RMSE Bias 

DBH  (mm) % (mm) % 
TLS data 933 46.0 15.4 -1.0 -0.3 
Manual field inventory 1508 45.1 15.1 0.4 0.1 
Tree height  (dm) % (dm) % 
TLS data 85 9.4 3.7 0.4 0.2 
Manual field inventory 142 9.2 3.6 -0.2 -0.1 
Stem volume  (dm3) % (dm3) % 
TLS data, model based 
only on spruce trees 

723 200.4 34.6 39.7 6.8 

TLS data, weighted 
model based on trees 
from all species 

933 197.4 34.0 19.8 3.4 

Manual field inventory, 
model based only on 
spruce trees 

1411 200.2 34.5 27.4 4.7 

                                                        
 

1. The DBH was validated for manually measured trees in a circle ≤ 40 m from the centre of 
the respective field plots. 

2. The tree height was validated for manually height measured trees in a circle ≤ 40 m from the 
centre of the respective field plots. 

3. The stem volume was validated for manually measured trees in a circle ≤ 40 m from the 
centre of the respective field plots. The stem volume was validated only for spruce trees since two 
of the models were based only on spruce trees. 
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Figure 9. (a) DBH estimated from ALS data when trained with DBH estimated from TLS data, 
with a 1:1 line, (b) DBH estimated from ALS data when trained with DBH from the manual field 
inventory, with a 1:1 line, and (c) the difference between DBH estimates when trained with TLS 
data and DBH estimates when trained with manual field inventory data versus the mean of DBH 
estimates when trained with TLS data and DBH estimates when trained with manual field 
inventory data. 

 
Figure 10. (a) H estimated from ALS data when trained with H of trees found from TLS data, 
with a 1:1 line, (b) H estimated from ALS data when trained with H of trees from the manual field 
inventory, with a 1:1 line, and (c) the difference between H estimates when trained with TLS data 
and H estimates when trained with manual field inventory data versus the mean of H estimates 
when trained with TLS data and H estimates when trained with manual field inventory data. 

 
Figure 11. (a) Stem volume estimated from ALS data when trained with stem volume of trees 
found from TLS data, with a 1:1 line, (b) stem volume estimated from ALS data when trained 
with stem volume of trees from the manual field inventory, with a 1:1 line, and (c) the difference 
between stem volume estimates when trained with TLS data and stem volume estimates when 
trained with manual field inventory data versus the mean of stem volume estimates when trained 
with TLS data and stem volume estimates when trained with manual field inventory data. 



27 

5 Discussion 

This study has presented a new method to combine TLS and ALS data for 
forest inventory at the single tree level. The method uses tree stems detected 
from TLS data as training data for tree crown segments from ALS data. The 
only manual measurements needed are the heights of a subsample of trees in 
each field plot to calibrate the tree heights estimated from ALS data. This 
reduces the need for manual field measurements, which means that a field 
inventory could be done more efficiently and with smaller risk for human 
errors.  

Validation of DBH estimation from TLS data has been done for larger 
samples (i.e., more than 10-20 trees) in only a few other studies. The accuracy 
of the DBH estimated from TLS data achieved in our study was better than in a 
study based on time of flight TLS data collected in a pine forest (Hopkinson et 
al. 2004) and worse than in a study based on phase shift TLS data collected in a 
mixed forest (Maas et al. 2008). Both the cited studies were based on TLS data 
collected at multiple positions. 

We improved the DBH estimates slightly by only using tree stems within 40 
m from the scanner. The maximum distance depends on the forest type and 
might be shorter in a multi-story forest with dense shrubs. However, the 
accuracy of DBH estimated from TLS data in this study was not highly 
dependent of the distance from the scanner. This may be related to the limited 
vertical field of view of the used scanner. For trees close to the scanner, the 
scanner only measures the lowest part of the tree stems. For trees further away 
from the scanner, the scanner measures a longer part of the tree stems but the 
tree stems may be obscured by stems and branches from other trees. By using a 
terrestrial laser scanner that measures distances within a larger vertical field of 
view, it might be possible to achieve higher accuracy for trees close to the 
scanner. 

The RMSE of the estimated DBH was larger for spruce trees than for pine 
trees, which is probably due to denser branches in spruce forest. Noise 
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reduction is essential to select the laser reflections from a tree stem before 
estimating the diameter. 

When taken from an area with trees, TLS data will have zones that are 
obscured from the scanner, meaning that some trees will be completely hidden 
and some trees will be partly hidden. One solution to this problem is to collect 
TLS data at multiple positions. However, in that case, criteria would still be 
needed to verify that the measurement of every tree stem is accurate enough. 
To achieve this it is useful to estimate the accuracy of the estimated DBH 
directly from the laser reflections. The accuracy criteria depend on the scanner 
and also on the forest type. In this study, the accuracy of the DBH estimated 
from TLS data was highest for tree stems with a set of laser reflections with 
width ≥ 0.5 × d and ≤ 1.5 × d, where d is the estimated stem diameter. One 
advantage of using trees detected from TLS data as training data for ALS data 
estimates at single tree level is that it is not necessary to measure all trees as 
long as the selected tree stems are representative for the forest. 

The tree heights could also be estimated from the TLS data. However, the 
laser scanner used in this study had a limited vertical field of view and very 
few tree tops were visible in the data. In general, the error of such estimation is 
typically 1-10 m (Maas et al. 2008; Hopkinson et al. 2004). The RMSE of tree 
height estimated from ALS data is typically less than 1 m (Persson et al. 2002) 
which means that the training data would have much larger errors than the 
estimate. To determine the positions of trees with manually measured heights 
from the TLS data, the trees could be marked with numbers made from 
material that is clearly visible in the TLS data and can be identified during the 
analysis. 

The combination of TLS data with remote sensing data requires co-
registration of the data sources. One source of errors is erroneous linking of 
trees between the two data sources. Another source of error is that some tree 
crown segments contain more than one tree. However, this affects both the 
estimation with trees detected from TLS data as training data and the 
estimation with trees from the manual field inventory as training data. 

The reason for the slightly lower accuracy with TLS data as training data is 
that the stem diameters of the tree stems detected from TLS data are not 
completely accurate. The estimates of DBH from ALS data with trees detected 
from TLS data as training data had a positive bias relative to the manually 
measured DBH. One reason is that the DBH in the training data had a positive 
bias. The DBH of all tree stems detected from TLS had no bias but the DBH of 
the subset that could be connected to tree crown segments in ALS data had a 
small positive bias. The reason might be that the segmentation of tree crowns 
in ALS data detects trees with large crowns more often than trees with small 



29 

crowns; trees with large crowns have denser branches, causing an uncertainty 
in the DBH estimation from TLS data since the fitted circles are influenced by 
reflections from the branches. The estimates of stem volume from ALS data 
had a positive bias for all models relative to the stem volume from the manual 
field inventory. The stem volume in the training data was a function of DBH to 
the power of 1.8-2.2 (Brandel 1990) which is a convex function. Since there is 
an uncertainty in the DBH, the calculated stem volume will always be greater 
than or equal to the real stem volume (Jensen 1906). The estimates from a 
weighted model based on trees from all species had a smaller bias. This is 
consistent with DBH having a larger coefficient in the stem volume function 
for spruce than for pine.  

Previous studies have achieved slightly higher accuracy for estimation of 
tree level DBH, tree height and stem volume from ALS data (e.g., Vauhkonen 
et al. 2010; Persson et al. 2002; Solberg et al. 2006; Vauhkonen et al. 2008). 
None of those studies, however, used cross-validation or a separate validation 
dataset. 

The accuracy of the estimates from ALS data using TLS data for training 
was almost as high as when using manual field inventory as training data. This 
means that the TLS-based method presented in this paper has the potential to 
become an important part of an automated forest inventory system. 
Additionally, TLS data offers the potential to determine timber quality of 
standing trees with high accuracy (Thies and Spiecker 2004) which is almost 
impossible to achieve with manual measurements as made in traditional forest 
inventory. New sensors such as distance cameras will make the equipment 
needed for the data collection more portable and the cost will most likely be 
lower. 
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