3,062 research outputs found

    Beta Spectrum Generator: High precision allowed β\beta spectrum shapes

    Full text link
    Several searches for Beyond Standard Model physics rely on an accurate and highly precise theoretical description of the allowed β\beta spectrum. Following recent theoretical advances, a C++ implementation of an analytical description of the allowed beta spectrum shape was constructed. It implements all known corrections required to give a theoretical description accurate to a few parts in 10410^4. The remaining nuclear structure-sensitive input can optionally be calculated in an extreme single-particle approximation with a variety of nuclear potentials, or obtained through an interface with more state-of-the-art computations. Due to its relevance in modern neutrino physics, the corresponding (anti)neutrino spectra are readily available with appropriate radiative corrections. In the interest of user-friendliness, a graphical interface was developed in Python with a coupling to a variety of nuclear databases. We present several test cases and illustrate potential usage of the code. Our work can be used as the foundation for current and future high-precision experiments related to the beta decay process. Source code: https://github.com/leenderthayen/BSG Documentation: http://bsg.readthedocs.i

    Defense semantics of argumentation: encoding reasons for accepting arguments

    Get PDF
    In this paper we show how the defense relation among abstract arguments can be used to encode the reasons for accepting arguments. After introducing a novel notion of defenses and defense graphs, we propose a defense semantics together with a new notion of defense equivalence of argument graphs, and compare defense equivalence with standard equivalence and strong equivalence, respectively. Then, based on defense semantics, we define two kinds of reasons for accepting arguments, i.e., direct reasons and root reasons, and a notion of root equivalence of argument graphs. Finally, we show how the notion of root equivalence can be used in argumentation summarization.Comment: 14 pages, first submitted on April 30, 2017; 16 pages, revised in terms of the comments from MIREL2017 on August 03, 201

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Adaptive aspects of the polymorphisms at the <i>Adh</i> and<i> αGpdh</i> loci in <i>Drosophila melanogaster</i>

    Get PDF
    Dit proefschrift beschrijft een onderzoek naar het optreden van interacties tussen de effecten van de Adh en aGpdh loci in omstandigheden zonder alcohol en de gevolgen hiervan voor het optreden van natuurlijke selectie. ... Zie: Samenvattin

    Multi-residue analysis of pharmaceuticals in Belgian surface water : a novel screening-to-quantification approach using large-volume injection liquid chromatography coupled to high-resolution mass spectrometry

    Get PDF
    The ever growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight highresolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-ofthe- art MS/MS instruments because of its ability to simultaneously screen towards a virtually unlimited list of suspect compounds and to perform target quantification. The challenge for such suspect screening is to develop a strategy which minimizes the false negative rate without restraining numerous false positives. At the same time, omitting laborious sample enrichment through large-volume injection ultraperformance liquid chromatography (LVI-UPLC) is advantageous avoiding selective preconcentration. A novel suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal intensity-dependent accurate mass error, hereby assuring the detection of 95% of pharmaceuticals present in surface water. Subsequently, the validation and applicability of the full-spectrum method for target quantification of the 69 pharmaceuticals in surface water is discussed. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L-1 up to 3.1 μg L-1
    corecore