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Defense semantics of argumentation: encoding reasons

for accepting arguments
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Abstract. In this paper we show how the defense relation among abstract ar-

guments can be used to encode the reasons for accepting arguments. After in-

troducing a novel notion of defenses and defense graphs, we propose a defense

semantics together with a new notion of defense equivalence of argument graphs,

and compare defense equivalence with standard equivalence and strong equiv-

alence, respectively. Then, based on defense semantics, we define two kinds of

reasons for accepting arguments, i.e., direct reasons and root reasons, and a no-

tion of root equivalence of argument graphs. Finally, we show how the notion of

root equivalence can be used in argumentation summarization.

Keywords: abstract argumentation, defense graph, defense semantics, argumen-

tation equivalence, argumentation summarization

1 Introduction

Abstract argumentation is mainly about evaluating the status of arguments in an argu-

ment graph [1,2,3], which is composed of a set of abstract arguments and a set of attacks

between them [4]. In many topics such as equivalence [5,6,7], summarization [8], and

dynamics in argumentation [9,10], the notion of extensions plays a central role. Since

in classical argumentation semantics, an extension is a set of arguments that are collec-

tively accepted, the existing theories and approaches based on this notion are mainly

focused on exploiting the status of individual arguments. However, besides the status

of individual arguments, in many situations, we need to know the reasons for accepting

arguments in terms of a defense relation. The following are two simple examples.

F1 : a // c1 // c2 // b
yyrrr
r F2 : a // boo

c4

ff▲▲▲▲
c3oo

First, consider a, b in F1 and F2. In F1, accepting a is a reason to accept c2, ac-

cepting c2 is a reason to accept c3, and accepting c3 is a reason to accept a. If we allow

this relation to be transitive, we find that accepting a is a reason to accept a. Similarly,

accepting b is a reason to accept b. Meanwhile, in F2, we have: accepting a is a reason

to accept a, and accepting b is a reason to accept b. So, from the perspective of the

reasons for accepting a and b, F2 is equivalent to F1, or F2 is a summarization of F1.

Second, consider the question when two argument graphs are equivalent in a dy-

namic setting. For F3 and F4 below, both of them have a complete extension {a, c}.

However, the reasons of accepting c in F3 and F4 are different. For the former, c is
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defended by a, while for the latter, c is unattacked and has no defender. In this sense,

F3 and F4 are not equivalent. For example, in order to change the status of argument

c from “accepted” to “rejected”, in F3, one may produce a new argument to attack the

defender a, or to directly attack c. However, in F4 using an argument to attack a cannot

change the status of c, since a is not a defender of c.

F3 : a // b // c F4 : a // b c

From the above two examples, one question arises: under what conditions, can two

argument graphs be viewed as equivalent? The existing notions of argumentation equiv-

alence, including standard equivalence and strong equivalence, are not sufficient to cap-

ture the equivalence of the argument graphs in the situations mentioned above. More

specifically, F1 and F2 are not equivalent in terms of the notion of standard equivalence

or that of strong equivalence, but they are equivalent in the sense that the reasons for

accepting arguments a and b in these two graphs are the same. F3 and F4 are equiva-

lent in terms of standard equivalence, but they are not equivalent in the sense that the

reasons for accepting c in these two graphs are different. Although the notion of strong

equivalence can be used to identify the difference between F3 and F4, conceptually it

is not defined from the perspective of reasons for accepting arguments.

Note that the reasons for accepting arguments in the above two examples are de-

picted in terms of a defense relation, which plays a central role in Dung’s concept of

admissibility and thus in admissibility based semantics. So, it is natural to define a new

semantics in this paper based on a defense relation such that the reasons for accepting

arguments can be encoded.

Since the new semantics is defined at the level of abstract argumentation, it can be

applied to various structured argumentations systems. In particular, in the field of legal

reasoning [20], argumentation can be used to model legal interpretation, dialogue, and

deontic reasoning, etc. In all these applications, it is useful to make clear the reasons for

accepting arguments in terms of a defense relation. In this paper, we will formulate a

defense semantics for abstract argumentation, while its application to various structured

argumentation systems is left to future work. The structure of this paper is as follows. In

Section 2, we introduce some basic notions of argumentation semantics. In Section 3,

we propose the notions of defenses and defense graphs, which lay a foundation of this

paper. In Section 4, we formulate defense semantics by applying classical argumen-

tation semantics to defense graphs, and study some properties of this new semantics.

In Section 5, we introduce two kinds of reasons for accepting arguments in terms of

defense semantics. We conclude in Section 6.

2 Argumentation semantics

An argument graph or argumentation framework (AF) is defined as F = (A,→), where

A is a finite set of arguments and →⊆ A×A is a set of attacks between arguments [4].

Let F = (A,→) be an argument graph. Given a set B ⊆ A and an argument

α ∈ A, B attacks α, denoted B → α, iff there exists β ∈ B such that β → α. Given

an argument α ∈ A, let α← = {β ∈ A | β → α} be the set of arguments attacking α,
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and α→ = {β ∈ A | α → β} be the set of arguments attacked by α. When α← = ∅,

we say that α is unattacked, or α is an initial argument.

Given F = (A,→) and E ⊆ A, we say: E is conflict-free iff ∄α, β ∈ E such that

α → β; α ∈ A is defended by E iff ∀β ∈ α←, it holds thatE → β; E is admissible iff

E is conflict-free, and each argument in E is defended by E; E is a complete extension

iff E is admissible, and each argument in A that is defended by E is in E; E is a

grounded extension iff E is the minimal (w.r.t. set-inclusion) complete extension; E
is a preferred extension iff E is a maximal (w.r.t. set-inclusion) complete extension;

E is a stable extension iff E is conflict-free and E attacks each argument that is not

in E. We use σ(F) to denote the set of argument extensions of F under semantics σ,

where σ is a function mapping each argument graph to a set of argument extensions.

We use co, gr, pr and st to denote complete, grounded, preferred and stable semantics

respectively. There are some other argumentation semantics (cf. [2] for an overview).

For argument graphs F1 = (A1,→1) and F2 = (A2,→2), we use F1 ∪ F2 to

denote (A1 ∪ A2,→1 ∪ →2). The standard equivalence and strong equivalence of

argument graphs are defined as follows. For simplicity, when we talk about equivalence

of AFs, we mainly consider the cases under complete semantics, while the full-fledged

study of equivalence will be presented in an extended version of the present paper.

Definition 1 (Standard and strong equivalence of AFs). [5] Let F and G be two

argument graphs, and σ be a semantics. F and G are of standard equivalence w.r.t. a

semantics σ, in symbols F ≡σ G, iff σ(F) = σ(G). F and G are of strong equivalence

w.r.t. a semantics σ, in symbols F ≡σ

s
G, iff for every argument graph H, it holds that

σ(F ∪H) = σ(G ∪ H).

Example 1. Consider F1 − F4 in Section 1. In terms of Definition 1, under complete

semantics, since co(F1) 6= co(F2), F1 6≡co F2, which implies that F1 6≡co
s

F2. And,

since co(F3) = co(F4), F3 ≡co F4. Let H = ({d}, {d → a}). Since co(F3 ∪ H) 6=
co(F4 ∪H), F3 6≡co

s F4.

Given an argument graph F = (A,→), the kernel of F under complete semantics,

call c-kernel, is defined as follows.

Definition 2 (c-kernel of an AF). [5] For an argument graph F = (A,→), the c-

kernel of F is defined as Fck = (A,→ck), where →ck=→ \{α → β | α 6= β, α →
α, β → β}.

According to [5], it holds that co(F) = co(Fck), and for any AFs F and G, Fck =
Gck iff F ≡co

s
G.

3 Defenses and defense graph

According to classical argumentation semantics, with respect to an extension E, an

argument α ∈ E is accepted because it is initial or for all γ ∈ α←, γ is attacked by

an argument in E. So, for all α, β ∈ E, if there exists γ ∈ A \ E such that α → γ
and γ → β, we say that accepting α is a (partial) reason to accept β, denoted as 〈α, β〉.
And, for all β ∈ E if β← = ∅ (i.e., β is an initial argument), we say that β is accepted
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without a reason, denoted as 〈ø, β〉 where ø is a symbol denoting an empty position. In

this paper, 〈α, β〉 or 〈ø, β〉 is called a defense.

Without referring to any specific extension, a defense 〈α, β〉 can be viewed as a

relation between α and β satisfying some constraints. Intuitively, there are the following

two minimal constraints. First, {α, β} is conflict-free. Otherwise, they can not be both

accepted. Second, there exists γ ∈ A \ {α, β} such that α → γ and γ → β, in the

sense that α defends β by attacking β’s attacker γ. Regarding the defense 〈ø, β〉, the

only constraint is that β is initial.

Example 2. Consider F5 below. 〈ø, a〉, 〈a, c〉 and 〈b, d〉 are defenses. Note that the three

defenses do not refer to a specific extension.

F5 : a // b // c // d

Based on the above analysis, we have the following definition.

Definition 3 (Defense). Let F = (A,→) be an argument graph. For α, β ∈ A, 〈α, β〉
is a defense iff {α, β} is conflict-free, and ∃γ ∈ A such that α → γ and γ → β; 〈ø, β〉
is a defense iff β is initial.

The set of defenses of F is denoted as FDEF . Given a defense 〈α, β〉 or 〈ø, β〉 ∈
FDEF , we call α the defender, and β the defendee, of the defense. Given a setD ⊆ FDEF ,

we write defendee(D) = {β | 〈α, β〉, 〈ø, β〉 ∈ D} to denote the set of defendees in D,

defender(D) = {α | 〈α, β〉 ∈ D} to denote the set of defenders in D, and def(D) =
defendee(D) ∪ defender(D) be the set of defendees and defenders in D. Note that not

all arguments of an AF are included in the defenses. Consider the following example.

Example 3. In F6, F7 and F8, 〈a2, a4〉, 〈a3, a5〉, 〈a4, a6〉, 〈ø, a7〉, 〈a7, a9〉, 〈ø, a11〉
and 〈a11, a13〉 are defenses, while some defense-like pairs, for instance (a1, a3) and

(a14, a13), are not defenses since both {a1, a3} and {a14, a13} are not conflict-free.

And, (ø, a10), (ø, a14) and (ø, a15) are not defenses, because they are not initial argu-

ments, but either self-attacked or attacked by a self-attacked argument.

F6 : a1 // a2 // a3 //}}
a4 // a5 // a6 F8 : a11 // a12 // a13

F7 : a7 // a8 // a9 a10oo zz
a14
%% // a15

99tttt

Given a defense 〈x, α〉 where x ∈ A ∪ {ø} and α ∈ A, 〈x, α〉 can be regarded as

a meta-argument. Its status is affected by other defenses and/or other defense-like pairs

(cf. (a1, a3) and (ø, a10) in Example 3). Since the pairs like (a1, a3) and (ø, a10) are

not accepted as a defense, but may be used to hamper the acceptance of some defenses,

their behavior is similar to that of defeaters in defeasible logic. We call them defeaters

of defenses (DoD).

Definition 4 (Defeaters of defenses). Let F = (A,→) be an argument graph. For

α, β ∈ A,

– (α, β) is a DoD, iff {α, β} is not conflict-free, and ∃γ ∈ A \ {α, β} such that

α → γ and γ → β.
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– (ø, β) is a DoD, iff β is self-attacked or attacked by a self-attacked argument.

The set of DoDs of F is denoted as FDoD .

In this definition, note that (α, β) and (ø, β) are not accepted as a defense, and

may be used to hamper the acceptance of some defenses. This does not mean that the

argumentsα and β in the corresponding argument graph can not be accepted, since they

may in some defenses at the same time. See the following example.

Example 4. InF9, 〈a, c〉, while (ø, b), (ø, c) and (b, d) are DoDs. c is both in the defense

〈a, c〉 and in the DoD (ø, c). When 〈a, c〉 is accepted, c is accepted.

F9 : a // b //
��

c // d

Note also that in Definition 4 when β is attacked by a self-attacked argument, it is a

DoD. Consider F8 in Example 3. 〈a11, a13〉 is a defense. If (ø, a15) is not a DoD, then

there is no DoD to prevent the acceptance of 〈a11, a13〉.
Let arg(FDoD) = {α, β | (α, β) ∈ FDoD} ∪ {β | (ø, β) ∈ FDoD} be the set

of arguments involved in FDoD. Let def(FDEF)→ be the set of arguments attacked by

def(FDEF). We have the following proposition.

Proposition 1. Let F = (A,→) be an argument graph. It holds that A = arg(FDoD)∪
def(FDEF) ∪ def(FDEF)→.

This proposition states that arguments in F are equivalent to the union of the argu-

ments in defenses, arguments in defeaters of defenses, and the arguments attacked by

the arguments in defenses.

Let Fd = FDEF ∪FDoD be the set of defenses and their defeaters. The attack relation

between the elements of Fd can be identified according to the attack relation between

the arguments involved. For convenience, we also write [x, β] to denote a defense 〈x, β〉
or a defeater of defenses (x, β) where x ∈ A ∪ {ø} and β ∈ A. Formally we have the

following definition.

Definition 5 (Attacks between defenses and their defeaters). For all [x, α], [y, β] ∈
Fd where x, y ∈ A ∪ {ø} and α, β ∈ A, we say that [x, α] attacks [y, β], denoted as

[x, α] →d [y, β] iff x→ y, x→ β , α → y, or α → β.

The set of attacks between defenses and their defeaters is denoted as →d. Given

D ⊆ Fd and X ∈ Fd, we use D →d X to denote that ∃Y ∈ D such that Y →d X .

Since the status of a defense is determined by that of other defenses and affected by

defeaters of defenses through the attacks between them, to evaluate the status of normal

defenses, one possible way is to use defense graph, which is defined as follows.

Definition 6 (Defense graph). Let F = (A,→) be an argument graph. Let Fd =
FDEF ∪ FDoD . A defense graph w.r.t. F , denoted d(F), is defined as follows.

d(F) = (Fd,→d) (1)

A defense graph can be viewed as a kind of meta-argumentation [11].
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Example 5. The defense graph of F6 is as follows.

d(F6) : (a2, a1) //

&&▼▼
▼▼

▼

��
(a3, a2) //

��

oo
��

〈a2, a4〉 // 〈a3, a5〉oo

��
(a1, a3)

OOff▼▼▼▼▼

WW
〈a4, a6〉

OO

4 Defense semantics

In a defense graph d(F) = (Fd,→d), nodes are defenses and/or defeaters of defenses,

rather than arguments in the corresponding argument graph F . So, when applying clas-

sical semantics to d(F), we get a set of extensions, each of which is a set of defenses.

By slightly modifying the definition for classical semantics, defense semantics can be

defined as follows.

Definition 7 (Defense semantics). Defense semantics is a function Σ mapping each

defense graph to a set of extensions of defenses. Given a defense graph d(F) = (Fd,→d

) where Fd = FDEF ∪ FDoD , let D ⊆ FDEF . We have:

– D is conflict-free iff ∄X,Y ∈ D such that X →d Y .

– X ∈ FDEF is defended by D iff for all Y ∈ Fd, if Y →d X , then ∃Z ∈ D such

that Z →d Y .

– D is admissible iff D is conflict-free and each member in D is defended by D.

– D is a complete extension of defenses iffD is admissible, and each member in FDEF

that is defended by D is in D.

– D is the grounded extension of defenses iff D is the minimal (w.r.t. set-inclusion)

complete extension of defenses.

– D is a preferred extension of defenses iff D is a maximal (w.r.t. set-inclusion) com-

plete extension of defenses.

– D is a stable extension of defenses iff D is conflict-free, and ∀X ∈ Fd \D, D →d

X .

The set of complete, grounded, preferred, and stable extensions of defenses of d(F)
is denoted as CO(d(F)), GR(d(F)), PR(d(F)) and ST(d(F)) respectively.

Note that the notion of defense semantics is similar to that of classical semantics.

The only difference is that in a defense graph, we differentiate two kinds of nodes:

defenses and defeaters of defenses. The former can be included in extensions, while the

latter are only used to prevent the acceptance of some defenses.

Now, let us consider some properties of the defense semantics of an argument graph.

The first property is about the relation between defense semantics and classical se-

mantics. LetD ∈ Σ(d(F)) be a Σ-extension of d(F). Now the question is whether the

set of defenders and defendees in D is a σ-extension of F . In order to verify this prop-

erty, technically, we first present the follow lemma. The lemma states that ∀〈α, β〉 ∈ D,

if α is attacked by an argument γ ∈ A, then ∃η ∈ def(D) such that η attacks γ.

Lemma 1 For allD ∈ Σ(d(F)), for all 〈x, y〉 ∈ D, for all γ ∈ A, if γ → x or γ → y,

then def(D) → γ.
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Example 6. Consider d(F1) below. Under complete semantics, CO(d(F1)) = {D1,

D2,D3}whereD1 = {},D2 = {〈a, c2〉, 〈c2, c3〉, 〈c3, a〉},D3 = {〈b, c4〉, 〈c1, b〉, 〈c4, c1〉}.

Take D2 and 〈a, c2〉 in D2 as an example. def(D2) = {a, c2, c3}. For a being attacked

by c4, and c2 being attacked by c1, it holds that def(D2) → c4 and def(D2) → c1.

c1 // c2

��

〈c1, b〉 //

��

��❀
❀❀

❀❀
❀❀

❀❀
❀❀

〈c2, c3〉oo

��

��✄✄
✄✄
✄✄
✄✄
✄✄
✄

F1 : a

OO

b

��

d(F1) : 〈a, c2〉

OO

//

��

〈b, c4〉

OO

��

oo

c4

OO

c3oo 〈c4, c1〉

OO

//

AA✄✄✄✄✄✄✄✄✄✄✄
〈c3, a〉

OO

oo

]]❀❀❀❀❀❀❀❀❀❀❀

Based on Lemma 1, under complete semantics, we have the following theorem.

Theorem 1. For all D ∈ CO(d(F)), def(D) ∈ co(F).

Theorem 1 makes clear that for each complete defense extension D of a defense

graph, there exists a complete argument extension E of the corresponding argument

graph such thatE is equal to def(D). On the other hand, the following theorem says that

for each complete argument extension E of an argument graph, there exists a complete

defense extension D of the corresponding defense graph such that D = d(E) where

d(E) = {〈x, y〉 ∈ FDEF | x ∈ E ∪ {ø}, y ∈ E}.

Theorem 2. For all E ∈ co(F), d(E) ∈ CO(d(F)).

The relation between argument extensions and defense extensions under other se-

mantics is presented in the following corollaries.

Corollary 1. ∀Σ ∈ {GR,PR, ST}, it holds that ∀D ∈ Σ(d(F)), def(D) ∈ σ(F).

Proofs for Lemma 1, Theorem 1, 2 and Corollary 1 are presented in the Appendix.

In the following theorems and corollaries, when we say Σ ∈ {CO,GR,PR, ST},

σ is referred to co, gr, pr and st, correspondingly. Meanwhile, when we say σ ∈
{co, gr, pr, st}, Σ is referred to CO, GR, PR and ST, correspondingly.

Corollary 2. ∀Σ ∈ {GR,PR, ST} it holds that ∀E ∈ σ(F), d(E) ∈ Σ(d(F)).

Proof. Under grounded semantics, we need to verify that d(E) is minimal (w.r.t. set-

inclusion). Assume the contrary. Then ∃D′ ( d(E) such that D′ is a grounded exten-

sion. According to theorem 1, def(D′) is a complete extension. It follows that def(D′) (
def(d(E)) = E. It turns out that E is not a grounded extension. Contradiction.

Under preferred semantic, it is easy to verify that d(E) is maximal (w.r.t. set-

inclusion).

Under stable semantics, we need to prove that for all [x, α] ∈ Fd \ d(E): d(E) →
[x, α]. Assume the contrary. Then, ∃[x, α] ∈ Fd \ d(E) such that d(E) does not attack

[x, α]. So, E does not attack x and α. Since E is stable, it holds that {x, α} \ {ø} ⊆ E.

So, [x, α] ∈ E. Contradiction.
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Theorems 1 and 2 and Corollaries 1 and 2 describe the relation between argument

extensions and defense extensions under various semantics. This relation can be further

described by two equations in the following two corollaries. First, by overloading the

notation, let d(σ(F)) = {d(E) | E ∈ σ(F)}, where σ ∈ {co, gr, pr, st}.

Corollary 3. For all σ ∈ {co, pr, gr, st}, it holds that d(σ(F)) = Σ(d(F)).

Proof. For all d(E) ∈ d(σ(F)), according to Theorem 2 and Corollary 2, d(E) ∈
Σ(d(F)). For all D ∈ Σ(d(F)), according to Theorem 1 and Corollary 1, def(D) ∈
σ(F). Since d(def(D)) = {〈β, α〉 ∈ FDEF | α, β ∈ def(D)} ∪ {〈ø, α〉 ∈ FDEF | α ∈
def(D)} = D, it holds that D ∈ d(σ(F)).

Example 7. Consider F10 and d(F10) below. Under complete semantics, we have:

– co(F10) = {E1, E2}, where E1 = {}, E2 = {b};

– d(co(F10)) = {d(E1), d(E2)}, where d(E1) = {}, d(E2) = {〈b, b〉};

– CO(d(F10)) = {D1, D2}, where D1 = {}, D2 = {〈b, b〉}.

So, it holds that d(co(F10)) = CO(d(F10)).

F10 : a // boo

��

d(F10) : 〈a, a〉 //

��''❖❖
❖❖❖

❖
〈b, b〉

''❖❖
❖❖❖

❖
oo

ww♦♦♦
♦♦♦ ��

c

cc❍❍❍❍❍❍
(a, c)

==

77♦♦♦♦♦♦

,,
//

OO

(c, b)
GG

oo //

gg❖❖❖❖❖❖
(b, a)

zz

rr
oo

gg❖❖❖❖❖❖

aa

Second, by overloading the notation, let def(Σ(d(F))) = {def(D) | D ∈ Σ(d(F))},

where Σ ∈ {CO,GR,PR, ST}.

Corollary 4. For all Σ ∈ {CO,GR,PR, ST}, it holds that σ(F) = def(Σ(d(F))).

Proof. For all E ∈ σ(F), according to Theorem 2 and Corollary 2, d(E) ∈ Σ(d(F)).
Since def(d(E)) = E, E ∈ def(Σ(d(F))). For all def(D) ∈ def(Σ(d(F))), since

D ∈ Σ(d(F)), according to Theorem 1 and Corollary 1, def(D) ∈ co(F).

Example 8. Under compete semantics, continue Example 7, def(CO(d(F10))) = {def(D1),
def(D2)}, where def(D1) = {}, def(D2) = {b}. It holds that co(F10) = def(CO(d(F10))).

The second property formulated in Theorems 3, 4 is about the equivalence of argu-

ment graphs under defense semantics, called defense equivalence of argument graphs.

Definition 8 (Defense equivalence of AFs). Let F and G be two argument graphs.

F and G are of defense equivalence w.r.t. a semantics Σ, denoted as F ≡Σ

d G, iff

Σ(d(F)) = Σ(d(G)).

Concerning the relation between defense equivalence and standard equivalence of

argument graphs, we have the following theorem.

Theorem 3. Let F and G be two argument graphs, and Σ ∈ {CO,GR,PR, ST} be a

semantics. If F ≡Σ

d G, then F ≡σ G.
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Proof. If F ≡Σ

d G, then Σ(d(F)) = Σ(d(G)). According to Corollary 4, it follows

that σ(F) = def(Σ(d(F))) = def(Σ(d(G))) = σ(G). Since σ(F) = σ(G), F ≡σ G.

Note that F ≡σ G does not imply F ≡Σ

d G in general. Consider the following

example under complete semantics.

Example 9. Since co(F3) = co(F4) = {{a, c}}, it holds that F3 ≡co F4. Since

CO(d(F3)) = {{〈ø, a〉}, 〈a, c〉} and CO(d(F4)) = {{〈ø, a〉}, 〈ø, c〉}, CO(d(F3)) 6=
CO(d(F4)). So, it is not the case that F3 ≡CO

d
F4.

F3 : a // b // c d(F3) : 〈ø, a〉 〈a, c〉

F4 : a // b c d(F4) : 〈ø, a〉 〈ø, c〉

About the relation between defense equivalence and strong equivalence of argument

graphs, under complete semantics, we have the following lemma and theorem.

Lemma 2 It holds that CO(d(F)) = CO(d(Fck)).

Proof. According to Corollary 3, d(co(F)) = CO(d(F)), d(co(Fck)) = CO(d(Fck)).
Since co(F) = co(Fck), CO(d(F)) = d(co(F)) = d(co(Fck)) = CO(d(Fck)).

Theorem 4. Let F and G be two argument graphs. If F ≡co
s

G, then F ≡CO
d

G.

Proof. If F ≡co
s G, then Fck = Gck. So, CO(d(Fck)) = CO(d(Gck)). According

to Lemma 2, CO(d(F)) = CO(d(Fck)), CO(d(G)) = CO(d(Gck)). So, we have

CO(d(F)) = CO(d(G)), i.e., F ≡CO
d

G.

Note that F ≡CO
d G does not imply F ≡co

s G in general. Consider the following

example.

Example 10. Since CO(d(F3)) = CO(d(F11)) = {{〈ø, a〉}, 〈a, c〉}, F3 ≡CO
d F11.

However, since Fck
3 6= Fck

11 , F3 6≡co
s

F11.

F11 : a //

��❃
❃❃
b // c d(F11) : 〈ø, a〉 〈a, c〉

d

@@���

5 Encoding reasons for accepting arguments

Defense semantics can be used to encode reasons for accepting arguments. Consider

the following example.

Example 11. CO(d(F12)) = {D1, D2}, whereD1 = {〈b, b〉, 〈b, d〉, 〈g, d〉, 〈e, g〉, 〈ø, e〉},

D2 = {〈a, a〉, 〈g, d〉, 〈e, g〉, 〈ø, e〉}. One way to capture reasons for accepting argu-

ments is to relate each reason to an extension of defenses. For instance, concerning the

reasons for accepting d w.r.t. D1, we differentiate the following reasons:

– Direct reason: accepting {b, g} is a direct reason for accepting d. This reason can

be identified in terms of defenses 〈b, d〉 and 〈g, d〉 in D1.
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– Root reason: accepting {e, b} is a root reason for accepting d, in the sense that

each element of a root reason is either an initial argument, or an argument without

further defenders except itself. This reason can be identified by means of viewing

each defense as a binary relation, and allowing this relation to be transitive. Given

〈e, g〉 and 〈g, d〉 inD1, we have 〈e, d〉. Since e is an initial argument, it is an element

of the root reason. Given 〈b, d〉 in D1, since b’s defender is b itself, b is an element

of the root reason.

F12 : d d(F12) : 〈a, a〉 //

��

〈b, b〉oo

��

��✞✞
✞✞
✞✞
✞✞
✞✞

a // boo // c

OO

〈b, d〉

OO

//

��

〈a, c〉

OO

oo

��
e // f // g

OO

〈f, c〉 //

��

OO

〈g, d〉

OO

oo

〈e, g〉

OO

CC✞✞✞✞✞✞✞✞✞✞
〈ø, e〉

dd❏❏❏❏❏

The informal notions in Example 11 are formulated as follows.

Definition 9 (Direct reasons for accepting arguments). Let F = (A,→) be an ar-

gument graph. Direct reasons for accepting arguments in F under a semantics Σ is a

function, denoted drF
Σ

, mapping from F to sets of arguments, such that for all α ∈ A,

drFΣ(α) = {DR(α,D) | D ∈ Σ(d(F))} (2)

where DR(α,D) = {β | 〈β, α〉 ∈ D}, if α is not an initial argument; otherwise,

DR(α,D) = {ø}.

Example 12. Continue Example 11. According to Definition 9, drF12

CO
(d) = {R1, R2},

where R1 = {b, g},R2 = {g}. drF12

CO
(f) = {R3, R4}, where R3 = R4 = {}.

For all D ∈ Σ(d(F)), we view D as a transitive relation, and let D+ be the transi-

tive closure of D.

Definition 10 (Root reasons for accepting arguments). Let F = (A,→) be an ar-

gument graph. Root reasons for accepting arguments in F under a semantics Σ is a

function, denoted rrF
Σ

, mapping from F to sets of arguments, such that for all α ∈ A,

rrF
Σ
(α) = {RR(α,D) | D ∈ Σ(d(F))} (3)

where RR(α,D) = {β ∈ A | 〈β, β〉 ∈ D+, β = α} ∪ {β ∈ A | (〈β, α〉 ∈
D+), (〈β, β〉 ∈ D+ ∨ β← = ∅)}, if α is not initial; otherwise, RR(α,D) = {ø}.

According Definition 10, we say that a set of arguments RR(α,D) is a root reason

of an argument α iff for all β ∈ RR(α,D), β is either equal to α when α (partially)

defends itself directly or indirectly through a transitive relation of defenses in D, or an

initial argument, or an argument that can (partially) defend itself directly or indirectly.
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Example 13. Continue Example 11. D+
1 = D1 ∪ {〈e, d〉, 〈ø, g〉, 〈ø, d〉}; D+

2 = D2 ∪
{〈e, d〉, 〈ø, g〉, 〈ø, d〉}. According to Definition 10, rrF12

CO
(d) = {R1, R2}, where R1 =

{b, e}, R2 = {e}. rrF12

CO
(f) = {R3, R4}, where R3 = R4 = {}.

Motivated by the first example in Section 1 (regarding F1), based on the notion of

root reasons, we propose as follows a notion of root equivalence of AFs.

Definition 11 (Root equivalence of AFs). Let F = (A1,→1) and H = (A2,→2)
be two argument graphs. For all B ⊆ A1 ∩ A2, if B 6= ∅, we say that F and H are

equivalent w.r.t. the root reasons for acceptingB under semanticsΣ, denoted F|B ≡Σ

rr

H|B, iff for all α ∈ B, rrF
Σ
(α) = rrH

Σ
(α).

When B = A1 = A2, we write F ≡Σ

rr
H for F|B ≡Σ

rr
H|B.

Example 14. ConsiderF1 andF2 in Section 1 again. Under complete semantics,CO(d(F1)) =
{D1, D2, D3} whereD1 = {},D2 = {〈a, c2〉, 〈c2, c3〉, 〈c3, a〉},D3 = {〈b, c4〉, 〈c1, b〉, 〈c4, c1〉}.

CO(d(F2)) = {D4, D5, D6} whereD4 = {},D5 = {〈a, a〉},D6 = {〈b, b〉}. LetB =
{a, b}. rrF1

CO
(a) = {{}, {a}, {}}, rrF2

co (a) = {{}, {a}, {}}, rrF1

CO
(b) = {{}, {}, {b}},

rrF2

co (b) = {{}, {}, {b}}. So, it holds that F1|B =CO
rr F2|B.

Theorem 5. Let F = (A1,→1) and H = (A2,→2) be two argument graphs. If

F ≡CO
rr H, then F ≡co H.

Proof. According to Definition 10, the number of extensions of co(F) is equal to

the number of rrFCO(α), where α ∈ A1. Since rrFCO(α) = rrHCO(α), A1 = A2. Let

rrFCO(α) = rrHCO(α) = {R1, . . . , Rn}. Let co(F) = {E1, . . . , En} be the set of exten-

sions of F , where n ≥ 1. For all α ∈ A1, for all Ri, i = 1, . . . , n, we have α ∈ Ei iff

Ri 6= {}, in that in terms of Definition 10,when Ri 6= {}, there is a reason to accept

α. On the other hand, let co(H) = {S1, . . . , Sn} be the set of extensions of H. For

all α ∈ A2 = A1, for all Ri, i = 1, . . . , n, for the same reason, we have α ∈ Si iff

Ri 6= {}. So, it holds that Ei = Si for i = 1, . . . , n, and hence co(F) = co(H), i.e.,

F ≡co H.

Note that F ≡co H does not imply F ≡CO
rr H in general. This can be easily verified

by considering F3 and F4 in Example 9.

The notion of root equivalence of argument graphs can be used to capture a kind of

summarization in the graphs. Consider the following example borrowed from [8].

Example 15. Let F13 = (A,→) and F13 = (A′,→′), illustrated below. Under com-

plete semantics, F13 is a summarization of F13 in the sense that A′ ⊆ A, and the

root reason of each argument in F13 is the same as that of each corresponding argu-

ment in F13. More specifically, it holds that rrF13

CO
(e3) = rrF13

CO
(e3) = {{e1, e2}},

rrF13

CO
(e2) = rrF13

CO
(e2) = {{ø}}, and rrF13

CO
(e1) = rrF13

CO
(e1) = {{ø}}.

F13 : e1 // a1 // a2 // o // e3 F13 : e1 // o // e3

e2 // b1 // b2

<<③③③
e2

==③③③

Definition 12 (Summarization of AFs). Let F = (A1,→1) and H = (A2,→2) be

two argument graphs. F is a summarization of H under a semantics σ iff A1 ⊂ A2,

and F|A1 ≡σ
rr H|A1.
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Now, a property of summarization of argument graphs under complete semantics is

as follows.

Theorem 6. Let F = (A1,→1) and H = (A2,→2) be two argument graphs. If F is

a summarization of H under complete semantics CO, then CO(F) = {E ∩ A2 | E ∈
CO(H)}.

Proof. Let co(F) = {E1, . . . , En}, co(H) = {S1, . . . , Sn}. According to the proof of

Theorem 5, E1 = S1 ∩ A2. Therefore, we have co(F) = {E ∩ A2 | E ∈ co(H)}.

The property looks similar to that of directionality of argumentation [12]. However,

they are conceptually different. Specifically, it is said that if a semantics σ satisfies

the property of directionality iff ∀F = (A,→), ∀U ⊆ A, if U is an unattacked set,

then σ(F ↓ U) = {E ∩ U | E ∈ σ(F)} where F ↓ U = (U,→ ∩(U × U)). So,

the property of directionality is about the relation between an argument graph and its

subgraph induced by an unattacked set . By contrast, the property of summarization of

argument graphs is about the relation between two root equivalent argument graphs.

6 Conclusions

In this paper, we have proposed a defense semantics of argumentation based on a novel

notion of defense graphs, and used it to encode reasons for accepting arguments. By in-

troducing two new kinds of equivalence relation between argument graphs, i.e., defense

equivalence and root equivalence, we have shown that defense semantics can be used

to capture the equivalence of argument graphs from the perspective of reasons for ac-

cepting arguments. In addition, we have defined a notion of summarization of argument

graphs by exploiting root equivalence.

Under complete semantics, defense equivalence is located inbetween strong and

standard equivalence. It is interesting to further investigate its position in the so-called

equivalence zoo where further equivalence notions inbetween the two extremal versions

are compared too [13], and to study how defense equivalence, root equivalence and

strong equivalence are related. We will present this part of work in an extended version

of the present paper.

Since defense semantics explicitly represents a defense relation in extensions and

can be used to encoded reasons for accepting arguments, it provides a new way to

investigate topics such as summarization in argumentation [8], dynamics of argumen-

tation [9,14,10], dialogical argumentation [15,16], etc. Further work on these topics

is promising. Meanwhile, it might be interesting to study defense semantics beyond

Dung’s argumentation, including ADFs [17], bipolar frameworks [18], structured argu-

mentation [19], etc. In particular, it would be interesting to apply defense semantics to

modeling the explanation of why a conclusion can be reached. In [21], in order to in-

crease the trust of the users for the Semantic Web applications, a system was proposed

to automatically generate an explanation for every answer about why the answer has

been produced. The notion of proof trace in [21] for explanation is closer to the notion

of support relation between arguments. So, combining the defense relation (which is

based on attack relation) and support relation would be useful to model the explanation

of conclusions of a structured argumentation system.
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Appendix

1. Proof of Lemma 1

Proof. For all Σ ∈ {CO,GR,PR, ST}, it holds that D ∈ Σ(d(F)) is a complete

extension. With respect to γ there are the following four possible cases. Let us analyze

them one by one. First, γ is initial. In this case, 〈x, y〉 is attacked by 〈ø, γ〉 that is

unattacked. So, D cannot defend 〈x, y〉, contradicting D being a complete extension.

Second, γ is self-attacked. In this case, (ø, γ) ∈ FDoD , and (ø, γ) →d 〈x, y〉. Since

〈x, y〉 is defended by D, ∃〈η, η′〉 ∈ D such that η → γ or η′ → γ. In other word, it

holds that def(D) → γ. Third, γ is attacked by η ∈ A \ {γ}, there are the following

situations:

– η is initial or all attackers of η are attacked by def(D): In this case, η does not

attack x or y. Otherwise, 〈x, y〉 /∈ D. Contradiction. Meanwhile, since {〈η, x〉}∪D
(reps., {〈η, y〉} ∪ D) is conflict-free, and D defends 〈η, x〉 (reps., {〈η, y〉}). Since

D is complete, 〈η, x〉 ∈ D (reps., 〈η, y〉 ∈ D). So, it holds that def(D) → γ.

– η is self-attacked. In this case, (ø, γ) ∈ FDoD. According to the second point above,

it holds that def(D) → γ.

– η is attacked by η′ ∈ A \ {η} such that η′ is not attacked by def(D): In this case,

(η′, γ) ∈ Fd, and (η′, γ) →d 〈x, y〉. Since 〈x, y〉 is defended by D, ∃〈θ, θ′〉 ∈ D
such that 〈θ, θ′〉 →d (η′, γ). Since η′ is not attacked by θ or θ′, γ is attacked by θ
or θ′. In other words, it holds that def(D) → γ.

2. Proof of Theorem 1

Proof. Let E = def(D). Under complete semantics, we need to prove: 1)E is conflict-

free, 2) E defends each member of E, and 3) each argument in A that is defended by

E is in E. Details:

– For all α, β ∈ E, α and β are defenders or defendees of defenses in D. Since D is

conflict-free, according to Definition 5, it is obvious that E is conflict-free.
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– For all α ∈ E, ∃〈x, α〉 ∈ D or 〈α, x〉 ∈ D where x ∈ A ∪ {ø}. For all γ ∈ A, if γ
attacks α, according to Lemma 2, E → γ. So, α is defended by E.

– For all α ∈ A, if α is defended by E, we have the following possible cases:

• α is unattacked: In this case, 〈ø, α〉 is in D. That is, α ∈ E.

• α is attacked by some arguments in F : For all γ ∈ α←, since α is defended

by E, there exists δ ∈ E such that δ → γ. It follows that 〈δ, α〉 ∈ FDEF , and

∃〈x, δ〉 ∈ D or 〈δ, x〉 ∈ D where x ∈ E ∪ {ø}. . Then, we have the following:

∗ if 〈δ, α〉 is unattacked, then since D is complete, 〈δ, α〉 ∈ D, i.e., α ∈ E;

otherwise,

∗ for all [u, η] ∈ Fd: [u, η] →d 〈δ, α〉, if u or η attacks α, then since α is

defended by E, there exists 〈ψ, ψ′〉 ∈ D such that ψ or ψ′ attacks u or η.

In other words, 〈ψ, ψ′〉 attacks [u, η]; if u or η attacks δ, then [u, η] attacks

〈x, δ〉 or 〈δ, x〉. Since D is complete, there exists 〈θ, θ′〉 ∈ D such that

〈θ, θ′〉 attacks [u, η]. So, 〈δ, α〉 is defended by D. Since D is complete, it

holds that 〈δ, α〉 ∈ D, and therefore α ∈ E.

3. Proof of Theorem 2

Proof. For all E ∈ co(F), since it is obvious that d(E) is conflict-free, we need to

verify: 1) d(E) defends each member of d(E), and 2) each defense in FDEF that is

defended by d(E) is in d(E). Details:

– For all 〈β, α〉 ∈ d(E), for all [x, y] ∈ Fd, if [x, y] attacks 〈β, α〉 such that x → β
or y → β, or x → α or y → α, since E is a complete extension, ∃η ∈ E such that

η → x or η → y. So, 〈η, β〉 or 〈η, α〉 is in d(E), and 〈η, β〉 or 〈η, α〉 attacks [x, y].
In other words, d(E) defends each member of d(E).

– For all 〈α, β〉 ∈ FDEF , if 〈α, β〉 is defended by d(E), then both α and β are

defended by def(d(E)) = E. Since E is a complete extension, α, β ∈ E. So,

〈α, β〉 ∈ d(E).

4. Proof of Corollary 1

Proof. ForE = def(D), under grounded semantics, we need to prove thatE is minimal

(w.r.t. set-inclusion). Assume the contrary. Then ∃E′ ( E such that E′ is a grounded

extension. According to Theorem 2, it holds that d(E) ∈ CO(d(F)) and d(E′) ∈
CO(d(F)). SinceE′ ( E, it holds that d(E′) ( d(E). Since d(E) = d(def(D)) = D,

d(E′) ( D. It turns out that D is not a minimal complete extension, contradicting

D ∈ GR(d(F)).

Under preferred semantic, similarly, it is easy to verify that E is maximal (w.r.t.

set-inclusion). So, for all D ∈ PR(d(F)), def(D) ∈ pr(F).
Under stable semantics, we need to prove that for all α ∈ A \ E: E → α. Assume

the contrary. Then, ∃α ∈ A \ E such that E does not attack α. There are the following

possible cases:

– α self-attacks. In this case, (ø, α) ∈ Fd \ D. Since D is a stable extension, D
attacks (ø, α). So, E attacks α. Contradiction.
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– α does not self-attack. Since α can not be initial, α is attacked by some argument

β ∈ A. It follows that β /∈ E and β does not self-attack. So, β is attacked by some

argument γ ∈ A. So, [γ, α] ∈ Fd. Since α /∈ E, [γ, α] /∈ D. Since D is a stable

extension,D attacks [γ, α]. SinceE = def(D) does not attack α, ∃η ∈ E such that

η attacks γ, and η does not attack α. Since α, β and η do not self-attack, we have

the following possible cases:

• {η, β} is conflict-free: In this case, 〈η, β〉 ∈ FDEF . Since E cannot attack η, if

〈η, β〉 /∈ D, ∃ψ ∈ E such that ψ attacks β. So, [ψ, α] ∈ Fd. Since [ψ, α] /∈ D,

[ψ, α] is attacked byD. Since E does not attack ψ, E attacks α. Contradiction.

• {η, β} is not conflict-free: If η attacks β, [η, α] ∈ Fd. It follows that E attacks

α. Contradiction. If η does not attack β, but β attacks η, 〈η, β〉 ∈ FDEF . This

case also leads to a contradiction.


	Lecture Notes in Computer Science

