380 research outputs found

    The role of boron and fluids in high temperature, shallow level metamorphism of the Chugach Metamorphic Complex, Alaska

    Get PDF
    The possible role of boron (B) involvement in granite equilibria and generation of melts during crustal metamorphism has been a focus of speculation in recent literature. Most of the evidence for such involvement derives from experimental data which implies that the addition of B will lower the temperature of the granite solidus. Also the presence of tourmaline has a minor effect on the temperature of the solidus. Further indirect evidence that B may be involved in partial melting processes is the observation that granulites are commonly depleted in B, whereas the B content of low grade metapelites can be high (up to 2000 ppm). Researchers' measurements of the whole-rock B contents of granulites from the Madras region, India are low, ranging from 0.4 to 2.6 ppm. Ahmad and Wilson suggest that B was mobilized in the fluid phase during granulite facies metamorphism of the Broken Hill Complex, Australia. Thus, it appears that during the amphibolite to granulite transition, B is systematically lost from metasediments. The B that is released will probably partition into the vapor phase and/or melt phase. Preliminary measurements imply that the boron content of rocks in the Chugach Metamorphic Complex is not sufficient to influence the processes of partial melting at low pressures

    Petrogenesis of Mount St. Helens Dacitic Magmas

    Get PDF
    The most frequent and voluminous eruptive products at Mount St. Helens are dacitic in composition, although a wide variety of magma types (basalt to rhyodacite) is represented. To address the petrogenesis of the dacites, we present major and trace element analyses of samples of pumice clasts and dome or flow lavas erupted during the past ∌40,000 years. The dacites have similar (in some cases even lower) contents of many incompatible elements (e.g., Zr, Hf, REE, U, Be, Ta, Nb) compared with those in associated basalts and andesites, whereas Ba, Rb, K, Cs, and Sr are relatively enriched. The unusual depleted nature of the dacites and generally low bulk distribution coefficients (estimated from glass/whole‐rock pairs) for numerous trace elements preclude an origin of these magmas principally by crystal fractionation of associated mafic magmas. A more plausible model for their origin involves melting of metabasaltic crustal rocks that have been enriched in Ba, Rb, Cs, and Sr by either intercalation of sediments with depleted basalt or selective metasomatic enrichment of the source region. Melting at crustal levels presumably is related to intrusion of mantle‐derived basaltic magmas. Compositional diversity among the erupted dacites can be attributed to spatial or temporal heterogeneity of the magma sources or, in some specific cases, to such processes as crystal fractionation, assimilation, and magma mixing

    Chromian Spinel–Olivine Phase Chemistry and the Origin of Primitive Basalts of the Southern Washington Cascades

    Get PDF
    Geochemically diverse basalts occur in an ~160-km-wide transect that stretches across the Quaternary southern Washington Cascades (SWC) volcanic arc. Two fundamental groups of SWC basalts can be identified on the basis of major and trace element chemistry. On primitive mantle-normalized “spidergrams”, Group I lavas resemble within-plate basalts, whereas Group II lavas exhibit chemical characteristics (e.g., Nb, Ta, and Ti depletions) typical of subduction-related magmas. The primitive nature of many SWC basalts is indicated by their high MgO (\u3e6.5 wt.%, up to 9.5 wt.%), Ni (\u3e85 ppm) and Cr (\u3e180 ppm) contents. Electron microprobe analyses of olivine–spinel pairs in a diverse suite of SWC basalts are used to further evaluate the primitive nature of these magmas. Some of the observed variations in olivine–spinel compositions can be attributed to oxidation, fractionation, mixing, and/or pressure variations during magma evolution. To minimize these effects, we focus on olivine-hosted spinels in samples for which olivine-host rock equilibrium can be demonstrated. Spinels in such rocks have Fe2O33+/(Fe3++Cr+Al)2+)\u3e44] and low Cr# [=100 Cr/(Cr+Al) 45) for Group II lavas; (3) spinel Mg# ranges from 45 to 71, and overlaps for Groups I and II. However, each group defines distinct trends on Mg# vs. Cr# and other variation diagrams, with Group II having more refractory characteristics. This observation is consistent with higher whole-rock Mg# and Fo contents of olivines for Group II lavas, and suggests that sources for those magmas are more refractory (i.e., more melt-depleted) than sources for Group I lavas. The “within-plate”-like chemistry of Group I lavas precludes significant slab-derived contributions and is consistent with their derivation by decompression melting of little modified and relatively fertile mantle wedge material upwelling beneath the arc. The fluid-mobile element-enriched nature of Group II lavas is consistent with melting of a mantle source(s) that has been modified by slab-derived fluids. However, the standard “flux melting” process invoked to explain formation of many arc magmas is problematic for the Cascades because (a) high temperatures inferred for the Cascadia subduction zone imply that the slab may be extensively dehydrated, in which case the inventory of volatiles and fluid-mobile elements is likely to be strongly depleted; and (b) Group I lavas occur at the volcanic front and appear to originate at depths proximal to the subducting slab. These geochemical and geometric constraints seem inconsistent with formation of Group II magmas by flux melting of the mantle wedge as commonly proposed for arcs. An alternative source for Group II lavas is chemically refractory lithospheric mantle that was previously metasomatized by earlier (40 Ma to present) Cascadia subduction and associated magmatism. Reheating and melting of such fluid-enriched domains could result from influx of hot decompression melts (Group I magmas). In either case, chemical and mineralogical evidence implicates two (or more) distinct processes of melt production and at least two distinct types of mantle source

    Mineralogy and Phase Chemistry of Mount St. Helens Tephra Sets W and Y as Keys to Their Identification

    Get PDF
    Voluminous and widespread tephras were produced frequently during the last 36,000 yr of volcanic activity at Mount St. Helens. Numerous tephra sets have been defined by D. R. Mullineaux, J. H. Hyde, and M. Rubin (1975, U.S. Geological Survey Journal of Research, 3, 329–335) on the basis of field relations, Fe-Mg phenocryst assemblage, and 14C chronology and are valuable marker beds for regional stratigraphic studies. In this study modal abundances and mineral compositions were determined (via petrographic and electron microprobe techniques) for numerous samples of individual layers within tephra sets W and Y to evaluate the degree of compositional variability within and between tephra layers and criteria by which to distinguish among Mount St. Helens and other Pacific Northwest tephras. Although individual layers within a set (e.g., We, Wn) cannot be distinguished from each other on the basis of mineralogic characteristics examined, mineral compositions allow distinction among layers W and Y and other Pacific Northwest tephras (e.g., Mazama, Glacier Peak). Fe-Ti oxide compositions and T-ƒO2 estimates derived using coexisting magnetite-ilmenite are especially useful due to the compositional homogeneity of these minerals both within and between samples of a given unit over a wide geographic area. The silicates show more compositional variability than the oxides, but SiO2/Al2O3 contents in hornblende and Fe/Mg ratios in hypersthene aid in distinguishing among Pacific Northwest tephras

    The Origin of Mount St. Helens Andesites

    Get PDF
    Mount St. Helens volcano has intermittently produced mainly dacitic products but occasionally erupted a more diverse suite of lavas including basalts and andesites. Petrogenetic relations between these magmas provide insight into the dynamics of the subjacent magma system. Mineralogical and geochemical features of representative lavas erupted during the past 2200 years can distinguish three basaltic and three andesitic variants. The mafic lavas include: (a) transitional, olivine + plagioclase basalts with low K2O and incompatible trace-element abundances: (b) calc-alkaline, olivine + plagioclase ± clinopyroxene basalts enriched in K 2O, TiO2, and incompatible trace elements: and (c) calc-alkaline, olivine + plagioclase basaltic andesites with incompatible trace-element contents transitional between the two basalt types. Intermediate lavas include (a) tholeiitic, two-pyroxene andesites, (b) calc-alkaline, plagioclase + two-pyroxenes ± olivine ± amphibole mafic andesites (56-59% wt.% SiO2), and (c) calc-alkaline, plagioclase + two-pyroxenes + amphibole high-silica andesites (61-62 wt.% SiO2). Eruption of these magmatic variants within the same eruptive phase implies the existence of different petrogenetic lineages, and that the plumbing system is sufficiently complex to simultaneously isolate and preserve numerous magma batches. It is unlikely that any of the andesites (or dacites) are derived by fractional crystallization of the recognized basaltic variants. Formation of the andesites simply by contamination (or assimilation-fractional crystallization) of basaltic magma is also improbable. More plausibly, the andesites represent mixing between basaltic and dacitic end-member magmas, each of which may be somewhat heterogeneous or vary in composition with time. In this model, efficient mixing must occur in some parts of the magma plumbing system, while some conduits or storage reservoirs must be effectively isolated

    Compositional Diversity of Late Cenozoic Basalts in a Transect Across the Southern Washington Cascades: Implications for Subduction Zone Magmatism

    Get PDF
    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north‐northwest trending faults and fissure zones that indicate a significant component of east–west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (Ka), IH (mostl

    Origin of Hawaiian Tholeiites: Trace Element Constraints

    Get PDF
    We report here geochemical studies of Hawaiian tholeiites and ultramafic xenoliths from Salt Lake Crater, Oahu. We focus attention on tholeiitic basalts that comprise the bulk of Hawaiian volcanoes. When the samples are screened to include only those lying neat the log-MgO (about 7 percent) end of olivine-control lines (Wright, 1971), tholeiites from individual volcanoes are remarkably uniform. On this basis, we show that, for tholeiites from six volcanoes, systematic geochemical differences exist that cannot be attributed to differentiation of these magmas from a common parental magma. Apparently there have been important differences in the processes of magma generation, source composition, or source mineral constitution. Partial melting calculations based on REE contents emphasize these distinctions, but unique melting models are not presented. In these models, relative REE abundances in the source material is a major uncertainty. Nd isotopic studies of Hawaiian basalts require systematic differences in Sm/Nd for the source material of each volcano. Furthermore, the time-integrated Sm/Nd of the sources must be less than that in chondrites. REE analyses of Hawaiian garnet lherzolite xenoliths show that they have chondritic to light REE-enriched relative abundances with absolute contents (for light REE) about 3 to 8 times chondrites. These data obviously conflict with interpretations of the Nd isotopic data. Several possibilities follow: (1) the available xenoliths are not parental to tholeiite, (2) our simple interpretation of the Nd isotopic data is wrong, and (3) the source regions may have been invaded at geologically recent times by a light REE-enriched phase, in which case the xenoliths may represent the course material. If the xenoliths are characteristic of the source, partial melting calculations indicate that the tholeiites may be generated by 15 to 20 percent melting of garnet lherzolite and at the sane tune conform to constraints imposed by the REE and Ni contents and the partitioning of Fe and Mg between melts and residues. We propose that the primary tholeiitic magmas contain no more than about 12 percent MgO, and that erupted magmas probably fractionated less than 10 to 15 percent of olivine during ascent and storage in high-level chambers

    Observatory's linguistic landscape: semiotic appropriation and the reinvention of space

    Get PDF
    Using a longitudinal ethnographic study of the linguistic landscape (LL) in Observatory's business corridor of Lower Main Road, the paper explores changes brought about by the influx of immigrant Africans, their artefacts and language practices. The paper uses the changes in the LL over time and the development of an "African Corner" within Lower Main Road, to illustrate the appropriation of space and the unpredictability, which comes along with highly mobile, technological and multicultural citizens. It is argued that changes in the LL are part of the act of claiming and appropriating space wherein space becomes summarily recontexualized and hence reinvented and "owned" by new actors. It is also argued that space ownership can be concealed through what we have called "brand anonymity" strategies in which the identity of the owner is deliberately concealed behind global brands. We conclude that space is pliable and mobile, and that, it is the people within space who carve out new social practices in their appropriated space.IBS

    Single-vortex-induced voltage steps in Josephson-junction arrays

    Full text link
    We have numerically and analytically studied ac+dc driven Josephson-junction arrays with a single vortex or with a single vortex-antivortex pair present. We find single-vortex steps in the voltage versus current characteristics (I-V) of the array. They correspond microscopically to a single vortex phase-locked to move a fixed number of plaquettes per period of the ac driving current. In underdamped arrays we find vortex motion period doubling on the steps. We observe subharmonic steps in both underdamped and overdamped arrays. We successfully compare these results with a phenomenological model of vortex motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex pair displays fractional voltage steps. A possible connection of these results to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in Journal of Physics, Condensed Matte

    Dynamic Impedance of Two-Dimensional Superconducting Films Near the Superconducting Transition

    Full text link
    The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and one In/InOx film have been measured in zero field using a two-coil mutual inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to have three contributions: the inductive superfluid, renormalized by nonvortex phase fluctuations; conventional vortex-antivortex pairs, whose contribution turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii unbinding temperature; and an anomalous contribution. The latter is predominantly resistive, persists well below the KTB temperature, and is weakly dependent on frequency down to remarkably low frequencies, at least 100 Hz. It increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about half the energy to create a vortex-antivortex pair, indicating that the frequency dependence is that of individual excitations, rather than critical behavior.Comment: 10 pages, 10 figs; subm PR
    • 

    corecore