The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and
one In/InOx film have been measured in zero field using a two-coil mutual
inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to
have three contributions: the inductive superfluid, renormalized by nonvortex
phase fluctuations; conventional vortex-antivortex pairs, whose contribution
turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii
unbinding temperature; and an anomalous contribution. The latter is
predominantly resistive, persists well below the KTB temperature, and is weakly
dependent on frequency down to remarkably low frequencies, at least 100 Hz. It
increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about
half the energy to create a vortex-antivortex pair, indicating that the
frequency dependence is that of individual excitations, rather than critical
behavior.Comment: 10 pages, 10 figs; subm PR