68 research outputs found

    A transgenic mouse model for tumour immunotherapy: induction of an anti-idiotype response to human MUC1

    Get PDF
    MUC1 is a membrane bound, polymorphic epithelial mucin expressed at the luminal surface of glandular epithelium. It is highly expressed in an underglycosylated form on carcinomas and metastatic lesions and is, therefore, a potential target for immunotherapy of cancer. The monoclonal antibody HMFG1 binds the linear core protein sequence, PDTR, contained within the immunodominant domain of the tandem repeat of MUC1. The efficacy of murine and humanized HMFG1 (Ab1) used as an anti-idiotypic vaccine was examined in mice transgenic for human MUC1 (MUC1.Tg) challenged with murine epithelial tumour cells transfected with human MUC1. Humoral idiotypic cascade through Ab2 and Ab3 antibodies was observed in MUC1.Tg mice following multiple antibody inoculations in the presence of adjuvant. Impaired tumour growth at day 35 and highest Ab3 levels were found in mice that had received mHMFG1 with RAS adjuvant. However, comparison of Ab3 levels in individual mice with tumour size in all treatment groups did not show a correlation between smaller tumours and increased levels of anti-idiotype antibody. This suggests that the anti-tumour effects of anti-idiotype vaccination are not solely related to the induction of idiotypic antibody cascades and probably involve other mechanisms. © 2000 Cancer Research Campaig

    Leucocyte subset-specific type 1 interferon signatures in SLE and other immune-mediated diseases.

    Get PDF
    OBJECTIVES: Type 1 interferons (IFN-1) are implicated in the pathogenesis of systemic lupus erythematosus (SLE), but most studies have only reported the effect of IFN-1 on mixed cell populations. We aimed to define modules of IFN-1-associated genes in purified leucocyte populations and use these as a basis for a detailed comparative analysis. METHODS: CD4+ and CD8+ T cells, monocytes and neutrophils were purified from patients with SLE, other immune-mediated diseases and healthy volunteers and gene expression then determined by microarray. Modules of IFN-1-associated genes were defined using weighted gene coexpression network analysis. The composition and expression of these modules was analysed. RESULTS: 1150 of 1288 IFN-1-associated genes were specific to myeloid subsets, compared with 11 genes unique to T cells. IFN-1 genes were more highly expressed in myeloid subsets compared with T cells. A subset of neutrophil samples from healthy volunteers (HV) and conditions not classically associated with IFN-1 signatures displayed increased IFN-1 gene expression, whereas upregulation of IFN-1-associated genes in T cells was restricted to SLE. CONCLUSIONS: Given the broad upregulation of IFN-1 genes in neutrophils including in some HV, investigators reporting IFN-1 signatures on the basis of whole blood samples should be cautious about interpreting this as evidence of bona fide IFN-1-mediated pathology. Instead, specific upregulation of IFN-1-associated genes in T cells may be a useful biomarker and a further mechanism by which elevated IFN-1 contributes to autoimmunity in SLE.SMF holds a Translational Medicine and Therapeutics PhD studentship from the Wellcome Trust and GlaxoSmithKline and has also received funding for this work from the Addenbrooke’s Charitable Trust. KGCS is the Khoo Oon Teik Professor of Nephrology, National University of Singapore. Singapore recruitment was supported by the Khoo Investigator Grant from the Duke-NUS Graduate Medical School, Singapore, and by National Medical Research Council of Singapore grants (NMRC/1164/2008 and IRG07nov089). This work was also supported by UK National Institute of Health Research Cambridge Biomedical Research Centre, the Lupus Research Institute (Distinguished Innovator Award, KGCS), the Medical Research Council UK (programme grant MR/L019027/1) and the Wellcome Trust (programme grant 083650/Z/07/Z and project grant 094227/Z/10/Z). The Cambridge Institute for Medical Research is in receipt of Wellcome Trust Strategic Award 079895.This is the final version of the article. It first appeared from BMJ Group via https://doi.org/10.1136/rmdopen-2015-00018

    Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly

    Get PDF
    Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response

    Hydrogen Sulfide and Neurogenic Inflammation in Polymicrobial Sepsis: Involvement of Substance P and ERK-NF-κB Signaling

    Get PDF
    Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway

    Establishment of a Transgenic Zebrafish Line for Superficial Skin Ablation and Functional Validation of Apoptosis Modulators In Vivo

    Get PDF
    BACKGROUND: Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)(cy17) (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR(+) fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR(+) signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR(+) fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR(+) fluorescent signaling. CONCLUSION/SIGNIFICANCE: The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo

    Projet PhytoCOTE - Évaluation de la pression phytosanitaire et des risques de contamination des eaux de surface sur la zone d'étude

    No full text
    National audienceThis communication is part of the presentation of the results of axis 1 of the PhytoCOTE project concerning the evaluation of phytosanitary pressure and the contribution of each agricultural / viticultural plot to the risks of pesticides transfers to surface waters on the basis of ' a multi-criteria analysis coupled with a GIS.Cette communication s'inscrit dans la présentation des résultats de l'axe 1 du projet PhytoCOTE concernant l'évaluation de la pression phytosanitaire et la contribution de chaque parcelle agricole/viticole aux risques de transfert des pesticides vers les eaux de surface sur la base d'une analyse multicritère couplée à un SIG. La pression phyto moyenne sur la zone d'étude est inférieure à celle de la Région : 70% des IFT calculés par exploitation viticole sont < IFT moyen régional en viticulture (16,9). Six critères ont été retenus avec pondération : Pente moyenne de la parcelle ; Type de sol (perméabilité) ; Connexion hydrologique (qualité, distance) ; Zone tampon (qualité, largeur) ; Pratiques de conduite (enherbement, travail du sol, orientation des rangs) ; Pression phytosanitaire (IFT). Des cartes de risque ont été produites sur le bassin versant expérimental dans le cadre de différents scénarios : molécules à tendance hydrophile, hydrophobes ; baisse significative de la pression phyto. La représentation graphique permet un échange constructif avec les acteurs de terrain et une bonne prise de conscience
    corecore