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SUMMARY 

 

T cells play important roles in protection during dengue virus (DENV) infection and in the 

immunopathogenesis of dengue fever. Using mass cytometry and a highly-multiplexed peptide-

HLA tetramer staining strategy, we probed T cells from dengue patients for a total of 430 dengue 

and control candidate epitopes presented on HLA A*1101, A*2402, and B*5801, together with 

key markers of activation, trafficking, and differentiation. We found that expression of PD-1, 

ICOS, CD39, CD69, and GPR56 on dengue-specific T cells varied significantly depending on HLA 

type. We also phenotypically profiled diverse T cell subsets and NK cells. Acute dengue infection 

resulted in broad activation and proliferation of these cells. During the acute stage, dengue-

specific CD8+ T cells expressed a unique profile of activation and trafficking receptors that 

distinguished them from non-dengue specific T cells. During convalescence dengue-specific T 

cells differentiated into two major cell fates, CD57+ CD127- terminally differentiated senescent 

memory cells and CD127+ CD57- proliferation-capable memory cells. The long-term maintenance 

of dengue-specific T cells with these phenotypes was evaluated in a second cohort of dengue 

patients and these subsets were found at elevated frequencies up to one year after infection. 

These analyses aid our understanding of the generation of T cell memory in dengue infection or 

vaccination. 

 

Keywords: mass cytometry, cytof, dengue, T cell, memory, CD57, IL-7R, CD127, DENV, tetramer  
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INTRODUCTION 

Dengue virus (DENV) is the most significant mosquito-borne flavivirus, estimated to cause up to 

390 million infections per year, of which 100 million cases are symptomatic (Bhatt et al., 2013). 

Dengue fever is caused by infection of any of four infectious DENV serotypes (DENV 1 - 4) that 

are endemic to more than 100 countries worldwide (Messina et al., 2014). At present, there is no 

antiviral therapy, and the sole approved vaccine, CYD-TDV, has demonstrated protective efficacy 

only for vaccinees with a serostatus indicating history of prior infection with DENV, and is thus 

recommended for use only in these populations (Sridhar et al., 2018). 

Symptomatic DENV infection typically results in a self-limiting febrile illness which 

coincides with viremia, lasts approximately 5 days, and is followed by recovery and the complete 

disappearance of DENV from the blood (Vaughn et al., 1997). Robust T cell activation is detected 

in the blood upon resolution of viremia and fever (Dung et al., 2010). Dengue infection can also 

manifest as more severe life-threatening dengue hemorrhagic fever (DHF) and dengue shock 

syndrome that are characterized by plasma leakage and hemorrhagic manifestations. Findings 

from epidemiological studies, as well as from clinical trials of the CYD-TDV vaccine, indicate that 

these forms of severe dengue are closely associated with secondary heterotypic DENV infection 

(Guzmán et al., 1990; Sridhar et al., 2018). 

Original antigenic sin, as applied to dengue infection, is the theory that memory T and B 

cells that arise from primary infection by one serotype of DENV or unequal immunogenicity by a 

vaccine, when encountering secondary infection with a different serotype of DENV, mount a 

cross-reactive but suboptimal and immunopathogenic response against the new serotype 

(Mongkolsapaya et al., 2003). The current lack of success in developing a universal dengue 
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vaccine has underlined the importance of understanding the immune response to natural dengue 

infections, defining correlates of protective immunity to dengue, as well as finding effective 

vaccine antigens (Sridhar et al., 2018; St John and Rathore, 2019). 

Dengue-specific CD8+ T cells mainly target the DENV non-structural proteins NS3, NS4, 

and NS5 while CD4+ T cells predominantly recognize epitopes from the structural proteins 

capsid/envelope and the secreted protein NS1 (Chandele et al., 2016; Duangchinda et al., 2010; 

Dung et al., 2010; Rivino et al., 2013; Simmons et al., 2005; Weiskopf et al., 2013, 2015). Despite 

the abundance of known T cell epitopes for dengue, single-cell studies using peptide-HLA 

tetramers and flow cytometry have focused on the analysis of T cells targeting a few well 

characterized epitopes (Friberg et al., 2011; Mongkolsapaya et al., 2003, 2006; Rivino et al., 2015; 

Simmons et al., 2005; Townsley et al., 2014). Alternatively, studies analyzing T cell responses 

targeting a broad range of epitopes have utilized peptide pools to stimulate bulk T cells, thus 

sacrificing in-depth epitope-specific single cell data (Tian et al., 2019; Weiskopf et al., 2013, 2015). 

However, dengue-specific memory T cells from individuals restricted to different HLA molecules 

differ significantly in terms of magnitude, phenotype and ability to produce cytokines (Weiskopf 

et al., 2013), indicating that there is much to be learned from studying T cell responses to a broad 

range of dengue epitopes at single cell resolution. 

To overcome these challenges in capturing both the depth and the breadth of the T cell 

response to natural dengue infection, we used mass cytometry to probe single cells with 44 

parameters at a time. In conjunction with highly multiplexed combinatorial peptide-HLA tetramer 

staining (Newell et al., 2013), we were able to screen for a total of 430 dengue and control 

candidate antigens in patients who expressed HLA-B*5801, HLA-A*1101, and HLA-A*2042, while 
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simultaneously measuring 27 activation and trafficking markers on CD8+ T cells. To understand 

the interplay between CD8+ T cells and the wider immune context, we also used a second 

complementary panel of markers for diverse T cell subsets and NK cells and performed Luminex 

analysis for cytokines in longitudinal plasma samples. Lastly, we were able to validate and extend 

some of our findings in a separate, larger patient cohort, which also included an analysis of 

dengue-specific T cells that were detectable one year after infection. 

Our data from ex vivo human peripheral blood samples shows that dengue infection 

resulted in broad activation and proliferation of multiple different immune cells at the acute 

stage of disease, but most of these biomarkers rapidly returned to baseline levels by the post-

febrile stage. With tetramer screening, we were able to detect T cells specific for 21 unique 

antigen-HLA combinations, which allowed us to analyze the impact of epitope 

immunodominance and HLA type on dengue-specific T cell phenotypes. Lastly, through trajectory 

analysis of dengue-specific T cell differentiation, we identified that dengue-specific T cells 

differentiated into two major populations: CD57+ CD127- cells that phenotypically resemble 

descriptions of terminally differentiated senescent memory cells and CD127+ CD57- cells that 

resemble proliferation-capable memory cells. We observed that these populations were stably 

maintained up to one year post infection.  
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RESULTS 

Acute Dengue Infection Causes Broad Activation of Various Immune Cells 

To understand how dengue infection affects various immune populations, we obtained dengue 

patient PBMCs during the following stages of dengue infection: acute (5-9 days post fever onset), 

post-febrile (14-28 days) and early convalescent (45-78 days). Clinical details for the first cohort 

are catalogued in Table S1A and comparisons between the main study cohort (Mab) and the 

second validation cohort (LNA, described later) are summarized in Table S1B. Mab cohort cells 

were stained with an antibody panel which focused on markers for T cell subsets, but also 

included markers for B cells and NK cells (Table S2), and were then acquired using a mass 

cytometer. We performed UMAP analysis (Becht et al., 2018a; McInnes and Healy, 2018) on live 

CD45+ CD14– cells and identified 9 separate clusters (Fig 1A, B): CD4+ T cells, CD8+ T cells, Vd1+ gd 

T cells, Vd2+ gd T cells, MAIT cells, B cells, CXCR5– B cells, plasmablasts, and NK cells. 

Comparisons of UMAP plots from acute, post-febrile and early convalescent time points 

indicated that significant increases in cells expressing Ki67, a marker of cell proliferation, 

occurred at the acute time point and that these cells diminished with time (Fig 1C). Using a 

manual gating strategy (Fig S1A), we found that while only frequencies of plasmablasts and 

CXCR5– B cells showed significant increases during acute infection (Fig S1B, Table S3), when we 

quantified the frequency of Ki67+ cells in each immune subset, all of the immune cell subsets 

except for B cells showed large expansions of Ki67+ cells at the acute stage (Fig 1D), indicating 

that dengue infection was causing proliferation of these immune cell subsets. 

With such simultaneous activation of multiple different immune cells, we hypothesized 
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that plasma cytokines might be helping to coordinate this effect. We used Luminex to measure 

75 plasma cytokines (Table S4). Using principle component analysis (PCA), we found that acute 

samples clustered separately from post-febrile and early convalescent samples, which clustered 

together (Fig S1C). A broad range of cytokines showed significant increases at just the acute time 

point (Fig 1E), including pro-inflammatory cytokines, IFN-g, IFN-g-promoted chemokines, and 

biomarkers of tissue damage. CCL24 (Eotaxin-2), a chemokine for eosinophils, was the only 

cytokine that increased with recovery time. Interestingly, one study found that peripheral blood 

eosinophils progressively increased from acute to convalescent stages of dengue (Wells et al., 

1980). 

 

In-Depth Analysis of Immune Cell Subsets Shows the Same Pattern of Acute Stage Activation 

UMAP and Louvain clustering analyses using Phenograph (Levine et al., 2015) were performed 

on CD4+ (Fig 2A) and non-MAIT CD8+ T cells (Fig 3A). Clusters identified by Phenograph were then 

named by comparing the median expression of relevant markers (Fig 2B, 3B) to immune cell 

subsets reported in the literature (Acosta-Rodriguez et al., 2007; Gosselin et al., 2010; Kunicki et 

al., 2017; Weiskopf et al., 2015; Wong et al., 2015). Jensen Shannon Divergence indices between 

these subsets were calculated to quantify the differences between each subset (Fig S2A). 

Hypergate was used to identify the optimum gating strategies for these clusters (Fig S2B-E) (Becht 

et al., 2018b), which were used for subsequent enumeration of cellular frequencies across 

batches. 

While overall frequencies of CD4+ T cell subsets did not appear to change significantly 
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over time, except for Th2 cells, which trended upward with recovery time (Fig 2C), frequencies 

of Ki67+ cells were significantly increased during acute infection in the central memory (CM), 

effector memory (EM), effector memory RA (EMRA) (Sallusto et al., 1999), Th1-like follicular 

helper cells (Th1-like TFH), Th1, CD57– Cytotoxic CD4+ T, Th1Th17, and Treg subsets (Fig 2D). 

We also analyzed CD4+ T cells for markers or marker combinations associated with 

activation and trafficking (Fig 2E, Fig S2F). For example, CD38+ CCR7– CD4+ T cells have been 

shown to be expanded and enriched for antigen-specific CD4+ T in the context of salmonella 

infection (Napolitani et al., 2018). As expected, we observed increased frequencies of CD38+ 

CCR7–, CD69+ and ICOS+ PD-1+ CD4+ T cells. In addition, CCR4+ cells increased with recovery. CCR4 

and Ki67 expression tended to be mutually exclusive (Fig S2G), so this increase is probably due to 

the gradual decrease of Ki67+ CCR4– cells. 

In CD4+ T cells, Th1 and Treg cells were the only subsets to have separate clusters of Ki67– 

and Ki67+ cells identified by Phenograph (Fig 2B). We observed that compared to Ki67– Th1 cells, 

Ki67+ Th1 cells had higher expression of CD38, ICOS, Granzyme B, PD-1, TBET, CCR5, HLA-DR, and 

CD69. Many of these markers have been observed on CCR5+ CD38hi antigen-specific Th1 effector 

cells that proliferate in the early stages of primary HIV-1 infection (Zaunders et al., 2005). In 

quantifying the changes of these markers with time, we found that the frequencies of CD38+ 

CCR7–, CD69+, ICOS+ PD-1+, CCR5+, and TBET+ Th1 cells mirrored the dynamics for Ki67 expression 

in Th1 cells (Fig 2F). 

Treg cells have previously been shown to increase Ki67 expression during acute dengue 

(Jayaratne et al., 2018; Lühn et al., 2007). Fig 2B indicated higher median expression of trafficking 

markers such as CCR4, CCR5 or CLA in Ki67+ Treg cells relative to Ki67– Treg cells. Again, CD38+ 
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CCR7–, CD69+, and ICOS+ PD-1+ Treg frequencies were increased only during acute disease (Fig 

2F). Interestingly, CCR4+ Treg cells increased over time. CD4+ CCR4+ cells were CD45RO+ and 

FOXP3-enriched (Fig S2H), which have previously been identified as effector Treg, a more 

suppressive Treg subset compared to naïve Treg cells (Sugiyama et al., 2013). 

Ten clusters were identified in CD8+ T cells (Fig 3A, B). Clusters 5 to 10 were Granzyme B+ 

effector T cells that were distinguished by combinations of positive or negative Helios, CD57, and 

Ki67 expression. Overall frequencies of the different CD8+ subsets did not change significantly 

(Fig 3C) but all subsets showed significant increases of Ki67+ cells during acute dengue only (Fig 

3D). This pattern was mirrored by frequencies of HLA-DR+ CD38+, CD69+, and ICOS+ PD-1+, as well 

as cutaneous lymphocyte antigen (CLA)- expressing CD8+ T cells (Fig 3E). CLA is a skin homing 

receptor which has been shown to be upregulated on dengue-specific CD4+ and CD8+ T cells, as 

well as NK cells in response to dengue infection (Keawvichit et al., 2018; Rivino et al., 2015). 

Lastly, frequencies of CD103+ T cells and CCR4+ EM cells trended upward with recovery time (Fig 

3E, F). 

Similar patterns of increased expression of Ki67, CD38 or CD69 at the acute stage only 

were observed for MAIT cells, Vd1+ and Vd2+ gd T cells, NK cells, NK cell subsets, and B cells (Fig 

3G-K). 

To analyze heterogeneity between individuals, we performed PCA on the frequencies of 

these broad subsets (Table S3, Fig S3A). The different timepoints spread out along the PC1 axis, 

which unsurprisingly was dictated by the frequencies of Ki67+ subsets (Fig S3B). Along the PC2 

axis, interindividual heterogeneity appeared to receive the strongest contributions from the 

frequencies of TBET+ and naïve CD8 T cells (Fig S3C). 
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Peptide-HLA tetramer screening enables epitope-specific analysis of T cell responses. 

Using highly multiplexed peptide-HLA tetramers, we screened for a total of 430 dengue and 

control antigens (Table S2) while measuring 27 activation and trafficking markers on T cells. An 

example of tetramer+ staining is shown in Fig 4A. Across 16 patients and 3 healthy controls, we 

detected 9 different dengue epitopes presented by HLA-B*5801, 7 presented by HLA-A*1101, 

and 5 presented by HLA-A*2402, as well as Epstein-Barr Virus (EBV), flu, and human 

cytomegalovirus (CMV) control epitopes (Table S5). Since the CMV epitopes were detected in 

only one patient and at low frequencies, they were left out of subsequent analysis. We also found 

two epitopes in the M region of dengue that had not been previously reported in the literature 

before (Fig S4A). For further patient-specific detail, the frequencies of epitope-specific T cells, 

IFN-g ELISPOT results from stimulation with pools of the same epitopes used for tetramer 

screening, and the diversity of hits within each patient are included in Fig S5A. We also computed 

the JSD values for distances between individual samples on the UMAP plot in Fig 4E and found 

that distances were dictated by time points, rather than individuals (Fig S5B). The number of 

epitopes detected for each patient varied significantly. Between zero and nine of the epitopes 

used in the tetramer screen were detected in each patient (Fig S5C). Our ELISPOT results for 

individual patients, as well as total ELISPOT results, largely mirrored the detected frequencies of 

dengue tetramer+ T cells (Fig S5A, D). 

Data for frequencies of dengue epitope-specific CD8+ T cells are summarized in Fig 4B. 

HLA-B*5801 epitopes NS53174-3182 (magenta) and NS53287-3295 (red) as well as HLA-A*1101 epitope 

NS31608-1617 (blue) were labelled as dominant epitopes because they were detected in multiple 

patients and in some of these patients, they were the most frequent epitope detected (Fig 4D, 
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S5A). HLA-A*2402 epitope NS52974-2983 (brown) was detected in only one patient but at the 

highest frequencies in the whole study. We could not determine any upward or downward trend 

in the frequencies of these cells over time. When the frequencies of individual epitopes were 

summed up into the total frequencies for each patient, early convalescent frequencies correlated 

strongly with post-febrile but not acute frequencies (Fig 4C). This is in line with previous 

observations made in recipients of the live attenuated vaccine to the yellow fever virus (YFV), 

which is in the same genus as DENV (Akondy et al., 2015). The number of patients from which 

each epitope was detected is summarized in Fig 4D. As has previously been shown, the epitopes 

detected were most commonly derived from the NS3 and NS5 antigens (Duangchinda et al., 2010; 

Rivino et al., 2013). 

 Using UMAP analysis, we determined that unlike the tetramer-negative CD8+ T cells, the 

vast majority of dengue, EBV and flu tetramer+ T cells were not naïve cells (Fig S4B). This non-

random skewing of the phenotypes of these tetramer+ T cells fits with the expected biology and 

helped to confirm that the tetramer staining and curation process were reliable. During acute 

dengue infection, dengue-specific T cells expressed Ki67 and many other activation markers 

which positioned these cells in their own section of the UMAP plot, whereas dengue-specific T 

cells collected at the post-febrile and early convalescent stages were more quiescent and similar 

to each other (Fig 4E, S4C). For these patients, we did not observe EBV and flu tetramer+ T cells 

experiencing bystander activation during natural dengue infection, in line with prior reports in 

dengue infection and YFV vaccine studies (Friberg et al., 2011; Miller et al., 2008), and these cells 

were sufficiently different from dengue-specific T cells and each other to occupy their own 

regions of the UMAP plot. 
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One hypothesis that has been put forward is that HLA type affects immunogenicity and 

consequently, T cell responses to the epitopes presented, leading to protection or susceptibility 

to dengue infection (Paul et al., 2013; Weiskopf et al., 2013). While we did not observe 

differences in the overall UMAP distributions of T cells recognizing epitopes derived from the 

same virus but presented by different HLA molecules (Fig. S4D), when we analyzed early 

convalescent dengue-specific T cells further, we observed that T cells that bound HLA-A*1101 

tetramer expressed less PD-1 compared to T cells that bound to HLA-A*5801 tetramer (Fig 4F, 

G). We quantified the PD-1+ populations in these cells according to each unique antigen and 

found that HLA-B*5801 tetramer+ T cells had significantly more PD-1+ cells than HLA-A*1101 and 

A*2402 tetramer+ T cells (Fig 4H). This result is strikingly similar to the results in which HLA-

B*3501 dengue tetramer+ T cells expressed more PD-1 than HLA-A*2402 dengue tetramer+ T cells 

(de Alwis et al., 2016). 

We also hypothesized that epitope dominance might affect T cell responses. We 

compared the UMAP distributions of T cells specific for dominant HLA-B*5801 epitopes, NS53174-

3182 and NS53287-3295, as well as HLA-A*1101 epitope, NS31608-1617, against all the other 

subdominant epitopes but found no obvious differences (Fig S4E). Frequencies of PD-1+ cells 

were also not significantly different between dominant and subdominant epitopes (Fig 4H). 

 

Peptide-HLA tetramer screening enables disease-specific analysis of T cell responses. 

Pooled dengue, EBV, and flu tetramer+ cells as well as Naïve, CM, EM, EMRA, and Ki67+ 

populations in tetramer-negative CD8+ T cells were analyzed for positive expression of activation 
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and trafficking markers, and the mean frequencies were summarized in a heatmap (Fig 5A). 

During acute infection, dengue-specific T cells expressed a unique combination of activation and 

trafficking markers that EBV- and flu-specific T cells did not, such as CD38, HLA-DR, Ki67, ICOS, 

Granzyme B, and CLA, mirroring observations in experiments using the YFV vaccine (Miller et al., 

2008). Also CLA has been shown to be preferentially expressed in dengue-specific T cells but not 

CMV-specific T cells during acute dengue (Rivino et al., 2015). Acute stage dengue-specific T cells 

matched most closely to bulk Ki67+ CD8+ T cells in expression signature, but early convalescent 

stage dengue-specific T cells did not map neatly to the standard naïve, CM, EM, and EMRA 

categories. The combination of CD57 and Granzyme B expression looked like promising markers 

for identifying dengue-specific T cells at the early convalescent stage. However, about 10% of 

CD8+ T cells in healthy controls were also CD57+ Granzyme B+ (Fig S4F). Hence, at the post-febrile 

and early convalescent stages, peptide-HLA tetramers were crucial for separating dengue-specific 

T cells from bystander T cells. 

Further analysis of dengue-specific T cells over time confirmed that most activation and 

trafficking markers were expressed early and declined except for CD57 and CD45RA which 

increased with time (Fig 5B). We also compared dengue-specific T cells with EBV and flu-specific 

T cells from early convalescent stage samples (Fig 5C). Compared to EBV and flu, dengue-specific 

T cells tended to be negative for CD103, CXCR3, CCR5, CD95, and CD127 but were enriched for 

CD57 and Granzyme B expression. Meanwhile, EBV-specific T cells had lower CD161 and CD49d 

expression but higher Integrinb7 expression than dengue or flu-specific T cells. Lastly, flu-specific 

T cells had weaker expression of HLA-DR and CD27 but higher expression of CXCR6 and CLA 

compared to EBV and dengue. 
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Trajectory Analysis of Dengue-specific T cells Reveals Two Differentiation Trajectories 

Monocle-2 is a robust and popular trajectory inference method that can predict any number of 

branches and requires no prior knowledge, which makes it a useful tool for unsupervised 

trajectory analysis (Qiu et al., 2017). With our data set, Monocle-2 correctly ordered cells from 

the different time points without our input and predicted one branch point arising around the 

transition from post-febrile to early convalescent stage and two cell fates (Fig 6A). The heatmap 

in Figure 6B shows the expression of all the markers along the branches, going from the pre-

branch stage to Cell Fate 1 or Cell Fate 2. The branch to Cell Fate 1 was characterized by increasing 

expression of CD57, CD161, Granzyme B, and CD45RA while the branch to Cell Fate 2 was 

characterized by increasing CD127, CCR7, CD103, CXCR3, and CD45RA expression. CD57 and 

CD127 are the markers that most uniquely define each cell fate (Fig 6C). 

CD127 marks memory or memory precursor T cells that can proliferate and give rise to 

long-lived memory cells (Cellerai et al., 2010; Kaech et al., 2003), while CD57+ CD8+ T cells are 

senescent and cytotoxic effector or effector memory T cells that contain Granzyme B (Brenchley 

et al., 2003; Chattopadhyay et al., 2009). When dengue-specific T cells were analyzed for CD57 

and CD127 expression, the acute stage had negligible frequencies of cells with positive expression 

for these markers, in keeping with these markers only being expressed after early activation (Fig 

6D, E). At the post-febrile and early convalescent stages, the frequencies of CD57+ and CD127+ 

dengue-specific cells both increased but with considerable skewing toward the CD57+ cells. In 

comparison, EBV and Flu-specific T cells were composed of higher frequencies of CD57- CD127+ 

cells and CD57+ CD127+ cells and fewer single positive CD57+ cells (Fig 6D). 

 We examined how the CD57+ CD127– and CD127+ CD57– cell fates related to standard 
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memory subset categories. Most of the CD57+ CD127– cells were terminally differentiated EM 

and EMRA cells (Fig 6F). On the other hand CD127+ CD57– cells contained a significant population 

of CCR7+ CD45RA+ CD45RO– cells, which also expressed CXCR3 and CD95 (Fig 6B) and closely 

resemble stem cell-like memory cells (Gattinoni et al., 2011). 

 We hypothesized that the intensity of immune activation during the acute stage of 

dengue might affect the composition of the immune system at the early convalescent stage. To 

investigate this, we performed large scale analyses of associations between acute and early 

convalescent on all the measurements that had thus far been shown to be significantly increased 

or decreased over the course of dengue infection since these were likely to be dengue-relevant 

(Figure S6, Table S6). Most significant correlations were between nodes from the same time point 

and the network was dominated by related subsets, probably reflecting the overabundance of 

redundant activation markers that were selected for by our previous analysis and assumptions. 

 

Validation of Findings in Separate Dengue Cohort 

Some concerns about the first cohort were the relatively small number of patients and the early 

endpoint of the study which might prevent us from observing the true endpoint of T cell 

differentiation. Subsequently, we also analyzed a second larger dengue patient cohort that was 

followed until one year after acute dengue infection, LNA. While a separate manuscript for the 

key findings for the LNA study, which are distinct from the ones here, is in preparation, there was 

significant overlap in the two study methodologies that we were able to validate some of our 

findings in the second patient cohort. For the LNA cohort, Singapore adult patients were recruited 
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at the same study site as the Mab cohort with PBMCs obtained at 4 time points: acute, post-

febrile, late convalescent, and late (Table S1B). 

In addition to confirming that the HLA-B*5801-specific increase for PD-1 shown in Fig 4H 

persists in late convalescent dengue-specific T cells (Fig 7A), we also observed that HLA-A*2402 

dengue-specific T cells had relatively depressed frequencies of ICOS+ cells. In the LNA cohort, we 

also found that at the acute stage, CD39 expression was lower in T cells that bound HLA-A*1101 

dengue tetramers, CD69 was lower in HLA-A*2402-specific T cells, and GPR56 was highest in HLA-

A*5801-specific T cells (Fig 7B). 

Interestingly, Monocle-2 predicted three cell fates for the dengue-specific T cells in our 

second cohort, as can be seen in terminal branches 2, 4, and 5 (Fig 7C). The two major cell fates 

2 and 4, were similar to the two cell fates in the first cohort as they were defined by CD57 and 

CD127 expression respectively, while expression of markers in the new cell fate, 5, lay between 

the two extremes (Fig 7D, E). As in the Mab cohort, the CD57+ CD127- population in this cohort 

was also enriched for CD161 and Granzyme B. In addition, they also upregulated expression of 

CX3CR1, CD16, KLRG1, GPR56. This constellation of markers fits with an effector T cell program 

that is cytotoxic and senescent (Bengsch et al., 2018; Ibegbu et al., 2005) and the upregulation of 

CD45RA and persistence of this population one year after infection suggests that these cells have 

become memory cells (Akondy et al., 2009). The CD127+ CD57- population also recapitulated the 

upregulation of CCR7, CXCR3, and CD45RA seen in our earlier findings. 

In the second cohort, we observed that in the late convalescent and late stages, the 

CD127+ CD57- population reached higher frequencies than the CD57+ CD127- population (Fig 7F). 

The differences in the findings for the two cohorts might be explained by the late convalescent 
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timepoint being more than two times later than the early convalescent timepoint, such that 

sufficient time has passed for the CD127+ CD57- memory cells to proliferate to greater numbers 

than the CD57+ CD127- effector cells. 
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DISCUSSION 

This work is, to our knowledge, the most extensive effort to date to directly characterize the 

impact of natural dengue infection on human T cell activation and differentiation. We tracked 

CD8+ T cells with various ligands, alongside the immune milieu made up of CD4+ T cells, 

unconventional T cells, NK cells, B cells, plasmablasts, and cytokines, and related them all 

together. A pattern that quickly emerged was that dengue infection caused broad activation and 

proliferation of innate as well as adaptive immune cells during acute disease. As the patients 

recovered, we observed a rapid return of immune cell activation and proliferation markers to 

baseline, such that the post-febrile and early convalescent stages showed similar patterns of 

activation. Since the acute time point was consistently the time point at which biomarkers were 

found to significantly diverge from the other two time points, we chose to focus most of our 

analyses on changes specific to this time point since we could be certain these changes were 

dengue-relevant. 

Th1 and Th1-like cells, such as Th1-like TFH and Th1Th17 cells (Acosta-Rodriguez et al., 

2007; Weiskopf et al., 2015), appeared to be preferentially activated in dengue infection. They 

were also all CXCR3-expressing. Another activated subset, CD57– Cytotoxic CD4+ T cells, 

expressed moderate levels of CXCR3. CXCR3 binds to CXCL4, CXCL9 (MIG), CXCL10 (IP-10), and 

CXCL11 (I-TAC) (Bachelerie et al., 2014). Of these chemokines, MIG, IP-10, I-TAC and MDC were 

included in our Luminex experiment. MIG, IP-10, and I-TAC were all significantly elevated during 

acute dengue in our study, as well as in others (Conroy et al., 2015; Her et al., 2017; Huang et al., 

2018; Rathakrishnan et al., 2012). These cytokines could explain the presence and/or activation 

of CXCR3+ subsets in peripheral blood. CXCR3 and IP-10 are important for CD4+ and CD8+ T cell 
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trafficking to the brain in murine intracerebral dengue infection (Hsieh et al., 2006), while in 

human patients, higher IP-10 levels correlated with severe disease like DHF (Conroy et al., 2015) 

or severe plasma leakage (Her et al., 2017).  

In accordance with other studies, we observed significant activation and proliferation of 

unconventional T cells, like MAIT cells (Paquin-Proulx et al., 2018; van Wilgenburg et al., 2016), 

gd T cells (Green et al., 1999; Tsai et al., 2015), B cell-derived plasmablasts (Wrammert et al., 

2012), and innate immune cells, like NK cells (Green et al., 1999; Keawvichit et al., 2018; 

Petitdemange et al., 2016) during acute dengue. MAIT and gd T cells have restricted ligand 

repertoires compared to ab T cells and sense viruses via TCR-independent mechanisms. For 

example, MAIT cells use a semi-invariant TCR (Va7.2-Ja12/20/33) that is restricted by the highly 

evolutionarily conserved, MHC class Ib molecule, MR1 (Treiner et al., 2003). Antibody blocking of 

MR1 did not inhibit activation of MAIT cells in co-culture exposed to DENV (van Wilgenburg et 

al., 2016). Instead virally triggered IL-18 correlated with MAIT cell activation in dengue-infected 

patient samples and antibody blocking of IL-18 in in vitro co-cultures with DENV inhibited MAIT 

activation. Similarly, gd T cells express invariant gd TCRs, which recognize various non-standard 

antigens, like MHC class I chain-related antigens A and B, phosphoantigens or lipids (Vermijlen et 

al., 2018). Again, IL-18 is important for activation of gd T cells to produce IFN-g (Tsai et al., 2015). 

In our study, IL-18 was one of the cytokines that significantly increased in acute dengue. IL-18, 

together with IL-12, promotes IFN-g production in a TCR-independent fashion (Yang et al., 2001). 

NK, MAIT, CD8+ T, Th1, Th1-like TFH, Th1Th17, and cytotoxic CD4+ T cells are all producers of IFN-

g (Gosselin et al., 2010; Paquin-Proulx et al., 2018; Weiskopf et al., 2013, 2015; Wong et al., 2015), 

and their activation mirrors the acute stage increase of IFN-g recorded in our study. Given that 
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the CXCR3-binding cytokines, MIG, IP-10, and I-TAC are all primarily regulated by IFN-g 

(Metzemaekers et al., 2018), this could set up a positive feedback loop that leads to cytokine 

storms and more severe forms of dengue. 

Several studies have sought to establish associations between HLA presentation to 

dengue-specific T cells and clinical protection from or susceptibility to dengue infection. 

(Weiskopf et al., 2013) performed IFN-g ELISPOT experiments on HLA-restricted T cell responses 

to dengue epitopes across a gamut of HLA-A and HLA-B types. Overall, they argued that HLA-B-

restricted responses reached higher magnitudes than HLA-A-restricted responses. In particular, 

their data set showed that T cell responses to HLA-B*5801-presented epitopes reached a higher 

magnitude than T cell responses to HLA-A*1101 and A*2402. In our study, HLA-B*5801 tetramer+ 

T cells showed higher expression of activation markers ICOS, PD-1, CD69, as well as CD39 and 

GPR56, compared to the other two HLA types. CD39 is believed to be a marker of exhausted CD8 

T cells, especially tumor-specific CD8+ T cells, (Simoni et al., 2018), although in this study of acute 

infection, we only observed its upregulation at the acute timepoint. GPR56 marks CD4+ TEMRA 

cells that are viral epitope specific (Tian et al., 2017). As such, our findings may support the 

hypothesis that HLA-B*5801 presentation of dengue epitopes might be more efficient at 

activating T cells than HLA-A*1101 and A*2402. However, we would like to caution that our data 

doesn’t explain how this might translate to protection from disease or clinical outcome in 

dengue. Similarly, the study by (Weiskopf et al., 2013) did not discuss the clinical outcomes of 

dengue infection in their donors, making it difficult to draw conclusions on how HLA types affect 

these. 

During acute infection, the dengue-specific CD8+ T cells in our patient groups were 
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relatively homogeneous in their upregulation of activation markers and trafficking receptors, 

such as Ki67, HLA-DR, and CD38, but during the post-febrile and later stages, these cells 

differentiated along two main paths, such that from 45 days to one year after fever onset we 

could distinguish two distinct subsets of dengue-specific T cells ("cell fate 1" and "cell fate 2"). 

Two markers, CD57 and CD127, most uniquely define cell fate 1 and 2, respectively. CD57 is a 

marker of T cell differentiation and senescence, the expression of which correlates with increased 

cytolytic ability but reduced proliferative and survival capacity in human memory CD8+ T cells 

(Priol et al., 2006). CD127, the IL-7Rα chain, is expressed early after T cell activation and in mice 

marks virus-specific T cells that survive to become long-term memory cells, i.e. display 

proliferative and recall capacity, as well as ability to survive in the absence of antigen (Kaech et 

al., 2003). Similarly, virus-specific CD127+ memory cells in humans proliferate vigorously 

following peptide stimulation or in response to IL-7 and/or IL-15, whereas their CD127– 

counterparts require both peptide and CD4+ T cell help, IL-2 or IL-15 for optimal expansion (van 

Leeuwen et al., 2005). In addition to CD57, cells that belong to cell fate 1 upregulated a 

constellation of markers that have been described for cytotoxic effector T cells: granzyme B, 

CX3CR1, CD16, KLRG1, and GPR56 (Bengsch et al., 2018; Chattopadhyay et al., 2009). The cells 

from cell fate 2 upregulated memory-like features: CD127, CCR7, CD103, and CXCR3 (Akondy et 

al., 2017; Gebhardt et al., 2009; Sallusto et al., 1999). Lastly, both cell fates upregulated CD45RA, 

which has been considered a sign of T cell memory formation in studies using the live attenuated 

YFV vaccine (Akondy et al., 2009; Blom et al., 2013). 

Identifying our CD57+ CD127- cell subset posed a conundrum because of different theories 

on what constitutes an effector, EM, or EMRA cell and the order of differentiation for these cells. 
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By the widely used definitions laid out by (Sallusto et al., 1999) , these cells bear the features of 

effector cells and EMRA cells, and EMRA cells are considered to be terminally differentiated. In a 

series of papers on T cell responses to the YFV vaccine, YF-17D, Rafi Ahmed et al. laid out an 

alternative timeline of single pathway differentiation of effector T cells into memory T cells. First, 

they found that all of their YF-17D tetramer+ T cells expressed perforin and granzyme B, which 

are mediators of effector CD8+ T cell killing, at the peak of the response to the vaccine (day 14) 

and suggested that this meant that this was an obligate phase that vaccine-responsive T cells 

must pass through before differentiating into memory T cells (Miller et al., 2008). These cells 

were also characterized as being HLA-DR+, CD38+, Ki67+, and BCL-2lo. Subsequently, they showed 

that YF-17D-specific cells were nearly 100% positive for Ki67+ and about 80% positive HLA-DR+ 

CD38+ subsets at the same time point post immunization (Akondy et al., 2009). The frequency of 

cells positive for these markers decreased with time, while the percentage of CD127+ cells 

decreased and then increased at day 90, at the point that they considered these cells to be 

memory cells. Our study recapitulates many of these results for dengue infection, but we see a 

substantial CD57+ population in our convalescent and late stage dengue tetramer+ T cells, while 

they did not in their YF-17D tetramer+ cells. However, they noted bimodal expression patterns of 

granzyme B in their memory T cell populations (Miller et al., 2008), and our dengue-specific T 

cells bifurcate into CD57+ granzyme B+ and CD127+ granzyme B- cells. Finally, in an elegant study, 

they tracked YFV vaccine-specific CD8+ T cells with deuterium labelling out to 750 days in vivo, 

revealing that at least a fraction of the cells present at the point of vaccination became long-lived 

memory CD8+ T cells that retained epigenetic marks associated with a history of having been an 

effector cell (Akondy et al., 2017). Effector and memory T cells were defined by the time point 
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after vaccination (effector; days 14-28, memory; day 90 or later, long term memory; 3 or more 

years later), not by phenotypic or functional markers. 

Comparing our results to the Ahmed lab’s definitions, the timing and the all-

encompassing activation and proliferation of dengue-tetramer+ T cells seen during the acute 

stage of dengue infection would sync up with the effector phase in the YFV vaccine studies. The 

bifurcation of CD57+ CD127- cells and CD127+ CD57- cells seen in our study would therefore occur 

during the transition from effector to memory T cells. The upregulation of CD45RA and 

persistence of these populations one year after infection also implies that these cells have 

become memory cells. Hence, we believe that the CD57+ CD127- are memory cells that retain 

effector and senescence characteristics and that CD127+ CD57- cells are proliferation-capable 

memory cells. 

In the first cohort, CD57+ CD127- cells outnumber CD127+ CD57- cells during the early 

convalescence time point but in the second cohort, CD127+ CD57- frequencies are higher than 

CD57+ CD127- cells at the late convalescence and late time points. This sequence of population 

changes would fit with the theory that rapid expansion of CD57+ CD127- effector cells allows them 

to peak first, followed by their replicative senescence and the slower expansion of the CD127+ 

CD57- memory cells. 

The long-term maintenance of CD57+ CD127– and CD127+ CD57– dengue-specific T cells 

past one year, their anti-viral capacities upon subsequent DENV infection, and how the immune 

milieu in acute disease affects their differentiation decisions remain to be determined and may 

have important implications for vaccine design. Vaccination should ideally elicit memory CD8+ T 

cells that can survive long-term in the absence of antigen and are capable of rapidly mounting an 
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anti-viral response upon natural DENV infection, thereby controlling DENV infection of 

susceptible cells. Successful flavivirus vaccines like the vaccines for YFV and the tick-borne 

encephalitis virus (TBEV) generated robust Th1 and Treg responses early on (Aberle et al., 2015; 

Blom et al., 2013; James et al., 2013) in tandem with our results, which suggest that these can be 

useful early indicators of a lasting immune memory. 
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FIGURE LEGENDS 

Figure 1. Broad changes in immune cells and plasma cytokines over the course of dengue 

infection. 

(A) UMAP was performed on a combined data set from 14 samples (3 patients X 3 time points, 2 

healthy controls) with a maximum of 60,000 live CD45+ CD14– immune cells per sample and the 

resulting clusters were identified. (B) Heatmap showing frequency of cells with positive marker 

expression in each of the identified clusters. (C) Representative UMAP plots from 1 patient with 

Ki67+ cells (pseudocolor) overlaid over Ki67– cells (grey). (D) Frequencies of Ki67+ cells in 

respective immune subsets at acute, post-febrile, and early convalescent time points. See Fig S1A 

for gating strategies. (E) Log10 transformed plasma cytokine concentrations at each time point.  

 

Figure 2. In-depth analysis of CD4+ T cell subsets shows activation and proliferation only during 

the acute stage of dengue infection. 

(A) UMAP was performed on a combined data set of 14 samples with a maximum of 10,000 CD4+ 

T cells per sample. Clusters were identified by Phenograph clustering. (B) Heatmap of median 

expression intensities in CD4+ T cell clusters. (C) Frequencies of CD4+ T cell subsets at each time 

point. See Fig S2 for gating strategies. (D) Frequencies of Ki67+ cells within each CD4+ T cell subset 

identified in Fig 2C. (E) Frequencies of CD4+ T cells expressing activation markers. (F) Frequencies 

of Th1 and Treg cells expressing trafficking and activation markers. 
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Figure 3. In-depth analysis of CD8+ T cells, unconventional T cells, NK, and B cells also shows 

activation and proliferation only during the acute stage of dengue infection. 

(A) UMAP was performed on a combined data set of 14 samples with a maximum of 10,000 CD8+ 

T cells per sample. Clusters were identified by Phenograph clustering. (B) Heatmap of median 

expression intensities in CD8+ T cell clusters. (C) Frequencies of CD8+ T cell subsets at each time 

point. (D) Frequencies of Ki67+ cells within each CD8+ T cell subset identified in Fig 3C. (E) 

Frequencies of CD8+ T cells expressing activation and trafficking markers. (F) Frequencies of EM 

cells expressing CCR4 and CCR5. Frequencies of (G) MAIT cells, (H) gd T cells, (I) NK cells, (J) NK 

cell subsets, and (K) B cells expressing activation markers. 

 

Figure 4. Peptide-HLA tetramer screening enables accurate characterization of dengue-specific 

CD8+ T cells by epitope. 

(A) Representative FACS plot of positive tetramer staining. (B) Frequency of Dengue tetramer+ T 

cells by HLA type and by epitope at each time point. (C) Spearman’s correlation between 

frequency of total dengue tetramer+ T cells at post-febrile and early convalescent time points. (D) 

Number of patients that responded to each epitope. Related epitopes are indicated in red and 

green. (E) UMAP was performed on a combined data set of tetramer+ T cells from 28 samples (10 

patients x 3 time points and 2 healthy controls) with a maximum of 500 tetramer+ cells per 

disease per sample. Cells are color coded by disease epitope and stage of dengue infection. (F, 

G) UMAP was performed on a combined data set of early convalescent stage dengue tetramer+ 

T cells from 28 samples with a maximum of 1192 cells per sample. Cells are color coded by (F) 
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HLA type and (G) PD-1 expression intensity. (H) Frequency of early convalescent stage dengue 

tetramer+ T cells that are PD-1+ by HLA type and dominance status. Each point represents a 

unique epitope. 

 

Figure 5. Disease-specific analysis of tetramer+ CD8+ T cells. 

(A) Mean frequencies of marker-expressing cells within dengue, EBV, and flu tetramer+ T cells, as 

well as naïve, CM, EM, EMRA, and Ki67+ tetramer-negative T cells, summarized as a heatmap. (B) 

Frequency of dengue tetramer+ T cells that express the respective activation markers at each 

time point. (C) Frequency of early convalescent dengue, EBV, and flu tetramer+ T cells that 

express the respective activation markers. 

 

Figure 6. Dengue tetramer+ T cells differentiate into two different populations. 

Monocle 2 trajectory analysis was performed on a combined data set of dengue tetramer+ T cells 

from 12 samples (4 patients X 3 time points). (A) Monocle plot displays dengue tetramer+ T cells 

coded by disease stage and branching into two cell fates. (B) Heatmap of marker expression 

intensity along the Pre-branch, Cell Fate 1, and Cell Fate 2 branches. Cluster 1 shows increasing 

expression for both cell fates. Cluster 2 shows increasing expression only for Cell Fate 1. Cluster 

3 shows increasing expressing only for Cell Fate 2. Cluster 4 shows decreasing expression for both 

cell fates. (C) Monocle plot showing intensity of CD57 (left) and CD127 (right) expression. (D) 

Representative FACS plot of dengue, EBV, and flu tetramer+ T cells from one patient. (E) 

Frequencies of CD57 CD127 subsets within dengue tetramer+ CD8+ cells over time. (F) Memory 



 29 

subsets within early convalescent epitope tetramer+ cells. 

 

Figure 7. Analysis of a second cohort of dengue patients confirms initial findings. 

(A) Frequency of late convalescent dengue tetramer+ T cells that are ICOS+ and PD-1+.                        

(B) Frequency of acute dengue tetramer+ T cells that are CD39+, CD69+, and GPR56+. (C) Monocle 

2 trajectory analysis was performed on a combined data set of dengue tetramer+ T cells from 65 

samples (22 patients X up to 4 time points). Monocle plot displays dengue tetramer+ T cells coded 

by disease stage and branching into three cell fates. Arrows indicate direction of time. (D) 

Heatmap of changing marker expression intensity along the 4 terminal branches. Arrow indicates 

direction of time for each branch. (E) Monocle plot showing intensity of CD57 (top left), CD127 

(top right), CXCR3 (bottom left), and Granzyme B (bottom right) expression. (F) Frequencies of 

CD57 CD127 subsets within dengue tetramer+ CD8+ cells over time. 
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Figure S1. Broad changes in immune cells and cytokines. (Related to Figure 1) 

(A) Representative FACS plots of gating strategies for main CD45+ CD14– populations. MAIT (CD3+ 

Va7.2+ CD161+), CD4+ T (CD3+ MAIT– CD4+ CD8–), CD8+ T (CD3+ MAIT– CD8+ CD4–), Vd1+ gd T (CD3+ 

MAIT– TCRgd+ Vd1+), Vd2+ gd T (CD3+ MAIT– TCRgd+ Vd2+), NK (CD3– CD56+), B (CD3– CD56– CD16– 

CD19/CD20+ CXCR5+), CXCR5– B (CD3– CD56– CD16– CXCR5– CD38+), Plasmablast (CD3– CD56– 

CD16– CXCR5– CD38hi). (B) Frequencies of immune cell subsets at the different stages of dengue 

infection. (C) PCA of plasma cytokine concentrations, coded by different stages of infection. 

 

Figure S2. Analysis of bulk T cells. (Related to Figures 2 and 3) 

(A) Heatmap of Jensen-Shannon Divergence indices calculated based on UMAP embeddings from 

the UMAP plots in Fig 2A and Fig 3A. (B-E) Representative FACS plots of gating strategies for CD4+ 

subsets. (B) Naive (CD45RA+ CD45RO– CCR7+), EMRA (CD45RA+ CD45RO– CCR7–), CM (CD45RA– 

CD45RO+ CCR7+), EM (CD45RA– CD45RO+ CCR7–). (C, clockwise) Th1 (CXCR3+ CCR6– Helios– CXCR5–

), Th1-like TFH (CXCR3+ CCR6– Helios– CXCR5+), Th1Th17 (CXCR3+ CCR6+ CCR4– CXCR5–), Th17 

(CXCR3– CCR6+ CCR4+ CXCR5–), CD57– Cytotoxic (CXCR3– CCR6– Granzyme B+ CD57–), CD57+ 

Cytotoxic (CXCR3– CCR6– Granzyme B+ CD57+), Th2 (CXCR3– CCR6– CCR4+ GATA3+). (D) TFH (CXCR5+ 

CXCR3– Helios–). (E) Treg (FOXP3+ CD25+ CD127–). (F) Representative FACS plots of gating 

strategies for T cell activation markers. Top left to right. CD38+ CCR7–, CD69+, CCR5+ and TBET+. 

Bottom left to right. ICOS+ PD-1+, Ki67+, CLA+. (G) Frequencies of CCR4 and Ki67 subsets in CD4+ T 

cells. (H) CCR4+ CD4+ cells are FOXP3+ and CD45RO+ compared to total CD4+ population. 
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Figure S3. PCA of broad immune subset frequencies (Related to Figures 2 and 3 and Table S3) 

(A) PCA graph. Only samples with more than one time point are shown. Time points from the 

same individual are connected by lines colored by the predicted disease status. (B, C) PCA 

loadings for PC1 and PC2. 

 

Figure S4. Analysis of tetramer+ T cells (Related to Figure 4) 

(A) FACS plots of hits M255-263 (AYTIGTTYF) and M261-269 (TYFQRVLIF). (B) UMAP was performed on 

a combined data set of tetramer+ T cells and tetramer-negative CD8+ T cells from 28 samples (10 

patients X 3 time points and 2 healthy controls) with a maximum of 2200 cells per disease per 

sample. UMAP plots display (Left) tetramer+ cells coded by disease and stage of dengue infection, 

overlaid over tetramer-negative cells and (Right) intensity of CCR7, CD45RA, and CD45RO 

expression. (C-E) UMAP plots as in Fig 4E displaying (C) expression intensities of important 

markers Ki67, CD57, and CD127, (D) HLA type of bound tetramer, and (E) dominance of dengue 

epitopes. (F) Representative FACS plot of Granzyme B+ CD57+ CD8+ T cells in healthy control. 

 

Figure S5. Tetramer frequencies and diversities in individual patients. (Related to Figure 4) 

(A) (Top rows) Frequency of tetramer staining compared with ELISPOT results from stimulation 

with peptide hits for each patient. (Bottom rows) Diversity of hits within each patient.                       

(B) Heatmap of Jensen-Shannon Divergence indices calculated based on UMAP embeddings from 

the UMAP plot in Fig 4E. (C) Number of antigens detected per patient. (D) Tetramer+ T cells and 

IFN-g ELISPOT results by HLA type. 
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Figure S6. Network map of significant associations between immune parameters from the acute 

and early convalescent stages of dengue infection. (Related to Figure 6) 

Parameters from the acute stage (V1) are pink while parameters from the early convalescent 

stage (V3) are blue. Broad subsets are coded as ellipses, dengue T cell subsets as rectangles, and 

cytokines as diamonds. Edge width is proportional to Spearman’s rho2 value. Grey lines indicate 

associations that are positively correlated and red lines indicate associations that are negatively 

correlated.  
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TABLE LEGENDS 

Table S1. Clinical details of patient samples and Mab and LNA cohorts. 

Table S2. Mass cytometry staining panels, experiment batches, and tetramers used. 

Table S3. Broad immune cell analysis 

Table S4. Cytokine Luminex analysis 

Table S5. Tetramer Hits. Antigens highlighted in green are unreported variants of known antigens 

and antigens highlighted in yellow do not have any variants reported in the Immune Epitope 

Database. 

Table S6. Analysis that compares immune parameters from the acute and early convalescent 

stages of dengue infection.  
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MATERIALS AND METHODS 

Patients and ethics statement 

All patients in the Mab cohort (Table S1) were recruited at Tan Tock Seng Hospital in Singapore 

during acute dengue infection and blood samples were taken after informed consent at three 

time points of infection: acute, post-febrile, and early convalescent (days 6-9, 14-21 and 40-80 

from fever onset, respectively). Patients were diagnosed by a team of clinicians according to 

WHO guidelines, as described previously (Rivino et al., 2013). The study was conducted in 

accordance with the Declaration of Helsinki and approved by the Singapore National Healthcare 

Group ethical review board (DSRB 2008/00293). Blood from anonymous healthy donors were 

also collected at the Singapore Immunology Network (SIgN) with approval by the Centralised 

Institutional Review Board (CIRB 2017/2806). Blood samples were collected in EDTA vacutainer 

tubes. PBMCs were isolated from peripheral blood by Ficoll gradient purification and 

cryopreserved in 90% fetal calf serum + 10% DMSO. 

 All methods for patients in the LNA cohort were identical except for the time points of 

blood sample collection: acute (days 3-8 from fever onset), post-febrile (days 10-27), late 

convalescent (days 173-192), and late (days 357-381). The Singapore National Healthcare Group 

ethical review board number is NHG DSRB 2015/00528. 

  

Antibody and streptavidin labelling 

Recombinant streptavidin was expressed and refolded in house as previously described (Cheng 

et al., 2019; Newell et al., 2013). Purified antibodies without carrier proteins were purchased as 
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listed in Table S2. Maleimide-conjugated DN3 MAXPAR chelating polymers (Fluidigm) were 

loaded with heavy metal isotopes (Fluidigm) according to the manufacturer’s recommendations. 

For antibody conjugations, 100 μg of purified antibodies lacking carrier proteins were coupled 

with the metal polymer structures according to the protocol provided by Fluidigm. For 

streptavidin conjugations, 100 μg of streptavidin was conjugated to the respective metal-loaded 

DN3 polymer and finally diluted to a concentration of 200 μg/mL for subsequent tetramerization 

(Leong and Newell, 2015; Newell et al., 2013). 

 

Virus epitope selection and prediction 

DENV and control epitopes for HLA-B*58:01, A*11:01, and A*24:02 were obtained from the IEDB 

(Vita et al., 2018) and previous papers (Rivino et al., 2013). Serotype variations to cover all 4 DENV 

serotypes were predicted for these peptides. In addition, 9- and 10-mer peptides based on the 

sequence of DENV-1 virus (strain TSV08-1-I) and DENV-2 virus (strain TSV01-2) were predicted 

for their binding affinity to A*11:01 and A*24:02 using the consensus prediction tool on the IEDB 

website (Vita et al., 2018). For each allele, peptides were selected if they were in the top 0.8% of 

binders. All peptides were synthesized by Mimotopes (Australia) with purity > 80%. 

 

Peptides sequence similarity and cluster assignment 

To avoid incorrect interpretations from cross-reactive T cell epitopes, sequences were loaded 

onto a Biostrings-based R-written environment (Newell et al., 2013). The biological sequence and 

matching algorithm performed pairwise alignment to calculate the peptide binding score based 
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on their sequence similarity and HLA anchor point. Peptides with similar binding scores were 

assigned the same peptide cluster number. The resulting peptide cluster assignations are listed 

in Table S2. Peptides within the same cluster were then assigned the same triple SAV-metal 

codings. 

 

UV peptide exchange to generate pHLA 

UV-cleavable peptide HLA monomers were produced in-house as previously described (Cheng et 

al., 2019; Newell et al., 2013). Peptide exchange was performed at 100 μg/mL of HLA monomer 

in 100 μL PBS with 25 μM of peptide of interest in a 96-well plate. The mixture was exposed to 

365 nm UV irradiation for 2 sessions of 5 minutes using a UVP CL-1000 Ultraviolet Crosslinker, 

and then stored at 4°C overnight to complete the exchange.  

 

84-plex or 220-plex combinatorial pHLA tetramer production  

Each metal-labelled streptavidin was diluted to 25 μg/mL in EDTA-free W buffer. To eliminate 

false positives from non-specific tetramer staining, two different configurations of triple 

streptavidin-metal codings were generated. The metal-labeled streptavidins were mixed using 

an automated liquid distribution robot (TECAN Freedom Evo200). On the day of cell staining, the 

triple streptavidin-metal mixtures were added to the corresponding pHLA in a stepwise manner 

of three additions, with 10 min of incubation time at room temperature between each step. 

Finally, 10 μM D-biotin (Sigma) was added to the tetramerized pHLA complexes to saturate 

unbound streptavidin. All tetramers for each configuration were combined and concentrated 



 4 

down to 5 μg/mL per pHLA tetramer in 10% FBS CyFACS buffer using an Amicon Ultra 50 kDa 

filter (Millipore). 

 

Cell Staining and Mass Cytometry Acquisition 

All antibody and tetramer cocktails were prepared on the day of cell staining. Antibodies used 

for pre-staining (Table S2) were combined in a 30 kDa filter (Amicon Ultra, Millipore), washed 

and centrifuged with PBS twice to remove azide content. Before staining, all tetramer and 

antibody cocktails were filtered using a 0.1 μM filter (Ultrafree, Millipore) to remove aggregates. 

Cryopreserved cells were thawed and washed twice with complete RPMI media (10% FBS, 1% 

penicillin/streptomycin/L-glutamine) (Gibco, Invitrogen). 80% of the cells were split evenly into 

two wells for Panel 1 staining with two different tetramer configurations and the remaining 20% 

of cells were used for staining with Panel 2. Cells were incubated with 50 nM dasatinib and pre-

stain antibodies in complete RPMI for 30 min at 37°C. After pre-staining, cells were washed in 

cold CyFACS buffer (PBS with 4% FCS, 2 mM EDTA, and 0.05% Azide) and incubated on ice with 

200 nM Cisplatin (Sigma) for 5 min. Cells were then washed twice with CyFACs and incubated for 

1 hour at room temperature with tetramer cocktail. Subsequently, cells were washed and stained 

with primary surface antibodies and/or EasySep Human T cell Isolation Cocktail (STEMCELL) for 

15 min at 4°C. Cells were washed and stained with secondary surface antibodies and/or EasySep 

Dextran RapidSpheres (STEMCELL) for 15 min at 4°C.  

For intracellular and intranuclear antibody staining, cells were washed and fixed with 

Foxp3/Transcription Factor Fix/Perm buffer (eBiosciences) for 30 min on ice. Cells were then 
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washed with 1X Permeabilization buffer (eBiosciences) and stained with primary intracellular 

antibodies for 30 min on ice, washed twice, followed by incubation with secondary intracellular 

antibodies for 30 min on ice. Finally, cells were washed with 1X Permeabilization buffer and fixed 

in 2% PFA (paraformaldehyde, Electron Microscopy Science) at 4°C overnight.  

On the next day, PFA was removed and cells were incubated with cellular barcodes for 30 

min on ice as previously described (Wong et al., 2015). Cells were then washed first with perm 

buffer, followed by CyFACS. Cellular DNA was labeled at room temperature with 250 nM iridium 

interchelator (Fluidigm) diluted in 2% PFA for 20 min. Subsequently, cells were washed with 

CyFACS, combined and enriched for CD3+ T cells using a magnet (EasySep). Immediately before 

mass cytometry acquisition, cells were washed twice with MilliQ water and passed into a filter 

top FACS tube. 1.5% of Four EQ beads (Fluidigm DVS) were mixed with the cell suspension. The 

first two batches of samples were acquired on a CyTOF2 instrument and the third batch of 

samples was acquired on a Helios instrument. 

 

Mass Cytometry Data Pre-Processing 

After mass cytometry acquisition, the signal of each parameter was normalized based on the 

equilibration beads added to each sample (Finck et al., 2013). All zero values were randomized 

by an R-script that uniformly distributes values between minus-one and zero. Individual samples 

were debarcoded manually in FlowJo v10 (Treestar, Inc.). For identification of tetramer positive 

CD8 cells, live singlet CD8+ T cells were gated and exported individually as CD8 Config 1 and CD8 

Config 2 fcs files. Thresholds for each metal-labelled streptavidin channel were manually defined 
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by gating a CD8+ T cell population that was negative for all of the streptavidin channels and using 

that as the tetramer negative baseline. Using the tetramer deconvolution algorithm (Newell et 

al., 2013), only cells positive for above-threshold staining in only three streptavidin channels were 

considered positive for tetramer staining. Frequencies of tetramer positive cells identified in the 

two different tetramer coding configurations of the same donor were further calculated for their 

likely correspondence using statistical stimulation, with p<0.1 being considered as plausible 

detection. Lastly, where there were multiple time points from the same donor, if the 

concordance in frequency of tetramer+ T cells failed to be achieved at two or more time points, 

the hit was removed. 

 

High Dimensional Cytometric Data Visualization and Analysis 

All data were transformed in R using the “logicleTransform” function by using the “flowCore” 

package (parameters: w = 0.25, t = 16,409, m = 4.5, a = 0). UMAP dimensionality reduction 

analysis was carried out using the R package uwot (McInnes and Healy, 2018)(Becht et al., in 

press). Louvain clustering analyses using Phenograph was used to identify clusters based on 

marker expression in an automated unbiased fashion (Levine et al., 2015). These clusters were 

then curated and named according to definitions that have previously been reported in the 

literature (Acosta-Rodriguez et al., 2007; Gosselin et al., 2010; Kunicki et al., 2017; Weiskopf et 

al., 2015; Wong et al., 2015). Hypergate was used to identify optimized gating strategies that 

accurately described these subsets using as few markers as possible (Becht et al., 2018). For this 

study, optimized gating strategies mostly selected for combinations of surface chemokine 

receptors, not transcription factors. For simplicity of presentation, we have not appended “-like” 



 7 

to subsets defined by surface markers. The optimized gating strategies were then applied to the 

different batches of experiments, with manual changes to account for batch effects, and from 

there frequencies of the various populations and subsets were identified. The code for calculating 

Jensen Shannon Distances was adapted from the R package cytutils (Amir, 2019) 

For Monocle 2 analysis (Qiu et al., 2017), the dataset of marker intensities in individual 

cells was exported from Flowjo as scale values, combined, and analysed using the 'monocle' R 

package available on BioConductor. A cellDataSet was created with 'gaussianff()' as the family 

function parameter. Typically, monocle defaults to a negative binomial. However, the data used 

is not RNA-seq data and is already normalised, thus the 'gaussianff()' parameter is used. 

Dimensionality reduction was done to a maximum of 2 components utilising the 'DDRTree' 

method. After which, cells were ordered to obtain a pseudotime trajectory and were also 

categorised by monocle into three different 'states'. This trajectory was then plotted, with a 

smooth line fitted along the trajectory. Cells were also colored according to disease state 

category. Average expression values for each marker were also plotted. 

Boxplots shown in this manuscript were generated using Graphpad Prism 7 software. Heatmaps 

and visual UMAP plots were generated using custom R-scripts. 

 

ELISPOT 

Enzyme-linked immunosorbent spot (ELISPOT) assays for the detection of IFN-g-producing cells 

in the presence of dengue peptides were performed as described previously (Rivino et al., 2013). 

Briefly, an equal number of thawed PBMCs (80-100 x 105 cells) were incubated overnight in 
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human IFN-g capture antibody-coated 96 wells with or without peptide mixtures (1 mg/mL) or 

with PMA/ionomycin (PMA 2 ng/mL; Iono 1 mg/mL) as a positive control.  DMSO concentration 

for the peptide mixtures did not exceed 0.5 % in each well. Spots were counted using an 

automated ELISPOT reader (Immunospot; Cellular Technology Limited). The number of IFN-g-

producing cells was expressed as spot-forming cells (SFC) relative to 1 x 105 PBMCs. Values were 

calculated by subtracting the number of spots detected in the nonstimulated control wells. 

Values were considered positive if they were equal or greater than 5 spots and at least 2 times 

above the means of the unstimulated control wells. 

 

Luminex 

Plasma from 49 patients and 4 controls was diluted 1:2 with PBS and probed with the Immune 

Monitoring 65-Plex Human ProcartaPlex Panel (Invitrogen) and Human Luminex Performance 

Assay Base Kit, MMP Panel (R & D systems). Samples or standards were incubated with 

fluorescent-coded magnetic beads, which had been pre-coated with respective capture 

antibodies. After an overnight incubation at 4°C with shaking, plates were washed twice with 

wash buffer. Biotinylated detection antibodies were incubated with the complex for 30 mins and 

subsequently Streptavidin-PE was added and incubated for another 30 mins. Plates were washed 

twice again, and beads were re-suspended with sheath fluid before acquiring on the FLEXMAP® 

3D (Luminex). Data acquisition was done using xPONENT® 4.0 (Luminex) acquisition software and 

data analysis was done using Bio-Plex Manager™ 6.1.1 (Bio-Rad). Standard curves were 

generated with a 5-parameter logistic algorithm. Cytokine concentrations were transformed with 

log10 transformation prior to analysis. 
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To generate PCA analysis, only cytokines for which there were n ³30 results within the 

range of accurate detection were selected for analysis. Any out of range values for these 46 

cytokines were substituted with the minimum or maximum detected values of the respective 

analyte. 

Abbreviations: BLC, B lymphocyte chemoattractant; HGF, hepatocyte growth factor; I-TAC, 

Interferon-inducible T cell alpha chemoattractant; IP-10, IFN-g-induced protein 10; LIF, leukemia 

inhibitory factor; MCP-1, monocyte chemoattractant protein 1; MIG, monokine induced by IFN-

g; TNF-RII, Tumor necrosis factor receptor 2. 

 

Statistical Analyses 

Changes in cell frequencies over time were determined by the Kruskal-Wallis test, followed by 

Dunn’s Post-hoc test. For changes in log10 cytokine concentrations, one-way ANOVA was applied, 

followed by Tukey’s Post-hoc test. p-values were corrected with the Benjamini-Hochberg (BH) 

method. For visual clarity, boxplot figures only show parameters where Dunn’s post-hoc test or 

Tukey’s Post-hoc test resulted in BH corrected p-values <0.05 (Table S3, S4). Graph annotations 

are as follows: * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 

The network analysis combined clinical information, frequencies of cell subsets from mass 

cytometry analysis, and plasma cytokine measurements (Table S6). To ensure relevance to 

dengue infection, conditions for inclusion of a parameter were Kruskal-Wallis or ANOVA test 

results with an uncorrected p-value of <0.05 and minimum unique values ³ 5. Spearman’s 

correlations, Kruskal Wallis tests, and Fisher exact tests were performed where applicable. Only 
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results where Spearman’s correlations Rho2 value >0.667, and BH corrected p-values <0.05 were 

included in the building of the network graph. 
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MATERIALS AND METHODS 

Patients and ethics statement 

All patients in the Mab cohort (Table S1) were recruited at Tan Tock Seng Hospital in Singapore 

during acute dengue infection and blood samples were taken after informed consent at three 

time points of infection: acute, post-febrile, and early convalescent (days 6-9, 14-21 and 40-80 

from fever onset, respectively). Patients were diagnosed by a team of clinicians according to 

WHO guidelines, as described previously (Rivino et al., 2013). The study was conducted in 

accordance with the Declaration of Helsinki and approved by the Singapore National Healthcare 

Group ethical review board (DSRB 2008/00293). Blood from anonymous healthy donors were 

also collected at the Singapore Immunology Network (SIgN) with approval by the Centralised 

Institutional Review Board (CIRB 2017/2806). Blood samples were collected in EDTA vacutainer 

tubes. PBMCs were isolated from peripheral blood by Ficoll gradient purification and 

cryopreserved in 90% fetal calf serum + 10% DMSO. 

 All methods for patients in the LNA cohort were identical except for the time points of 

blood sample collection: acute (days 3-8 from fever onset), post-febrile (days 10-27), late 

convalescent (days 173-192), and late (days 357-381). The Singapore National Healthcare Group 

ethical review board number is NHG DSRB 2015/00528. 

  

Antibody and streptavidin labelling 

Recombinant streptavidin was expressed and refolded in house as previously described (Cheng 

et al., 2019; Newell et al., 2013). Purified antibodies without carrier proteins were purchased as 
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listed in Table S2. Maleimide-conjugated DN3 MAXPAR chelating polymers (Fluidigm) were 

loaded with heavy metal isotopes (Fluidigm) according to the manufacturer’s recommendations. 

For antibody conjugations, 100 μg of purified antibodies lacking carrier proteins were coupled 

with the metal polymer structures according to the protocol provided by Fluidigm. For 

streptavidin conjugations, 100 μg of streptavidin was conjugated to the respective metal-loaded 

DN3 polymer and finally diluted to a concentration of 200 μg/mL for subsequent tetramerization 

(Leong and Newell, 2015; Newell et al., 2013). 

 

Virus epitope selection and prediction 

DENV and control epitopes for HLA-B*58:01, A*11:01, and A*24:02 were obtained from the IEDB 

(Vita et al., 2018) and previous papers (Rivino et al., 2013). Serotype variations to cover all 4 DENV 

serotypes were predicted for these peptides. In addition, 9- and 10-mer peptides based on the 

sequence of DENV-1 virus (strain TSV08-1-I) and DENV-2 virus (strain TSV01-2) were predicted 

for their binding affinity to A*11:01 and A*24:02 using the consensus prediction tool on the IEDB 

website (Vita et al., 2018). For each allele, peptides were selected if they were in the top 0.8% of 

binders. All peptides were synthesized by Mimotopes (Australia) with purity > 80%. 

 

Peptides sequence similarity and cluster assignment 

To avoid incorrect interpretations from cross-reactive T cell epitopes, sequences were loaded 

onto a Biostrings-based R-written environment (Newell et al., 2013). The biological sequence and 

matching algorithm performed pairwise alignment to calculate the peptide binding score based 
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on their sequence similarity and HLA anchor point. Peptides with similar binding scores were 

assigned the same peptide cluster number. The resulting peptide cluster assignations are listed 

in Table S2. Peptides within the same cluster were then assigned the same triple SAV-metal 

codings. 

 

UV peptide exchange to generate pHLA 

UV-cleavable peptide HLA monomers were produced in-house as previously described (Cheng et 

al., 2019; Newell et al., 2013). Peptide exchange was performed at 100 μg/mL of HLA monomer 

in 100 μL PBS with 25 μM of peptide of interest in a 96-well plate. The mixture was exposed to 

365 nm UV irradiation for 2 sessions of 5 minutes using a UVP CL-1000 Ultraviolet Crosslinker, 

and then stored at 4°C overnight to complete the exchange.  

 

84-plex or 220-plex combinatorial pHLA tetramer production  

Each metal-labelled streptavidin was diluted to 25 μg/mL in EDTA-free W buffer. To eliminate 

false positives from non-specific tetramer staining, two different configurations of triple 

streptavidin-metal codings were generated. The metal-labeled streptavidins were mixed using 

an automated liquid distribution robot (TECAN Freedom Evo200). On the day of cell staining, the 

triple streptavidin-metal mixtures were added to the corresponding pHLA in a stepwise manner 

of three additions, with 10 min of incubation time at room temperature between each step. 

Finally, 10 μM D-biotin (Sigma) was added to the tetramerized pHLA complexes to saturate 

unbound streptavidin. All tetramers for each configuration were combined and concentrated 
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down to 5 μg/mL per pHLA tetramer in 10% FBS CyFACS buffer using an Amicon Ultra 50 kDa 

filter (Millipore). 

 

Cell Staining and Mass Cytometry Acquisition 

All antibody and tetramer cocktails were prepared on the day of cell staining. Antibodies used 

for pre-staining (Table S2) were combined in a 30 kDa filter (Amicon Ultra, Millipore), washed 

and centrifuged with PBS twice to remove azide content. Before staining, all tetramer and 

antibody cocktails were filtered using a 0.1 μM filter (Ultrafree, Millipore) to remove aggregates. 

Cryopreserved cells were thawed and washed twice with complete RPMI media (10% FBS, 1% 

penicillin/streptomycin/L-glutamine) (Gibco, Invitrogen). 80% of the cells were split evenly into 

two wells for Panel 1 staining with two different tetramer configurations and the remaining 20% 

of cells were used for staining with Panel 2. Cells were incubated with 50 nM dasatinib and pre-

stain antibodies in complete RPMI for 30 min at 37°C. After pre-staining, cells were washed in 

cold CyFACS buffer (PBS with 4% FCS, 2 mM EDTA, and 0.05% Azide) and incubated on ice with 

200 nM Cisplatin (Sigma) for 5 min. Cells were then washed twice with CyFACs and incubated for 

1 hour at room temperature with tetramer cocktail. Subsequently, cells were washed and stained 

with primary surface antibodies and/or EasySep Human T cell Isolation Cocktail (STEMCELL) for 

15 min at 4°C. Cells were washed and stained with secondary surface antibodies and/or EasySep 

Dextran RapidSpheres (STEMCELL) for 15 min at 4°C.  

For intracellular and intranuclear antibody staining, cells were washed and fixed with 

Foxp3/Transcription Factor Fix/Perm buffer (eBiosciences) for 30 min on ice. Cells were then 



 5 

washed with 1X Permeabilization buffer (eBiosciences) and stained with primary intracellular 

antibodies for 30 min on ice, washed twice, followed by incubation with secondary intracellular 

antibodies for 30 min on ice. Finally, cells were washed with 1X Permeabilization buffer and fixed 

in 2% PFA (paraformaldehyde, Electron Microscopy Science) at 4°C overnight.  

On the next day, PFA was removed and cells were incubated with cellular barcodes for 30 

min on ice as previously described (Wong et al., 2015). Cells were then washed first with perm 

buffer, followed by CyFACS. Cellular DNA was labeled at room temperature with 250 nM iridium 

interchelator (Fluidigm) diluted in 2% PFA for 20 min. Subsequently, cells were washed with 

CyFACS, combined and enriched for CD3+ T cells using a magnet (EasySep). Immediately before 

mass cytometry acquisition, cells were washed twice with MilliQ water and passed into a filter 

top FACS tube. 1.5% of Four EQ beads (Fluidigm DVS) were mixed with the cell suspension. The 

first two batches of samples were acquired on a CyTOF2 instrument and the third batch of 

samples was acquired on a Helios instrument. 

 

Mass Cytometry Data Pre-Processing 

After mass cytometry acquisition, the signal of each parameter was normalized based on the 

equilibration beads added to each sample (Finck et al., 2013). All zero values were randomized 

by an R-script that uniformly distributes values between minus-one and zero. Individual samples 

were debarcoded manually in FlowJo v10 (Treestar, Inc.). For identification of tetramer positive 

CD8 cells, live singlet CD8+ T cells were gated and exported individually as CD8 Config 1 and CD8 

Config 2 fcs files. Thresholds for each metal-labelled streptavidin channel were manually defined 
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by gating a CD8+ T cell population that was negative for all of the streptavidin channels and using 

that as the tetramer negative baseline. Using the tetramer deconvolution algorithm (Newell et 

al., 2013), only cells positive for above-threshold staining in only three streptavidin channels were 

considered positive for tetramer staining. Frequencies of tetramer positive cells identified in the 

two different tetramer coding configurations of the same donor were further calculated for their 

likely correspondence using statistical stimulation, with p<0.1 being considered as plausible 

detection. Lastly, where there were multiple time points from the same donor, if the 

concordance in frequency of tetramer+ T cells failed to be achieved at two or more time points, 

the hit was removed. 

 

High Dimensional Cytometric Data Visualization and Analysis 

All data were transformed in R using the “logicleTransform” function by using the “flowCore” 

package (parameters: w = 0.25, t = 16,409, m = 4.5, a = 0). UMAP dimensionality reduction 

analysis was carried out using the R package uwot (McInnes and Healy, 2018)(Becht et al., in 

press). Louvain clustering analyses using Phenograph was used to identify clusters based on 

marker expression in an automated unbiased fashion (Levine et al., 2015). These clusters were 

then curated and named according to definitions that have previously been reported in the 

literature (Acosta-Rodriguez et al., 2007; Gosselin et al., 2010; Kunicki et al., 2017; Weiskopf et 

al., 2015; Wong et al., 2015). Hypergate was used to identify optimized gating strategies that 

accurately described these subsets using as few markers as possible (Becht et al., 2018). For this 

study, optimized gating strategies mostly selected for combinations of surface chemokine 

receptors, not transcription factors. For simplicity of presentation, we have not appended “-like” 
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to subsets defined by surface markers. The optimized gating strategies were then applied to the 

different batches of experiments, with manual changes to account for batch effects, and from 

there frequencies of the various populations and subsets were identified. The code for calculating 

Jensen Shannon Distances was adapted from the R package cytutils (Amir, 2019) 

For Monocle 2 analysis (Qiu et al., 2017), the dataset of marker intensities in individual 

cells was exported from Flowjo as scale values, combined, and analysed using the 'monocle' R 

package available on BioConductor. A cellDataSet was created with 'gaussianff()' as the family 

function parameter. Typically, monocle defaults to a negative binomial. However, the data used 

is not RNA-seq data and is already normalised, thus the 'gaussianff()' parameter is used. 

Dimensionality reduction was done to a maximum of 2 components utilising the 'DDRTree' 

method. After which, cells were ordered to obtain a pseudotime trajectory and were also 

categorised by monocle into three different 'states'. This trajectory was then plotted, with a 

smooth line fitted along the trajectory. Cells were also colored according to disease state 

category. Average expression values for each marker were also plotted. 

Boxplots shown in this manuscript were generated using Graphpad Prism 7 software. Heatmaps 

and visual UMAP plots were generated using custom R-scripts. 

 

ELISPOT 

Enzyme-linked immunosorbent spot (ELISPOT) assays for the detection of IFN-g-producing cells 

in the presence of dengue peptides were performed as described previously (Rivino et al., 2013). 

Briefly, an equal number of thawed PBMCs (80-100 x 105 cells) were incubated overnight in 
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human IFN-g capture antibody-coated 96 wells with or without peptide mixtures (1 mg/mL) or 

with PMA/ionomycin (PMA 2 ng/mL; Iono 1 mg/mL) as a positive control.  DMSO concentration 

for the peptide mixtures did not exceed 0.5 % in each well. Spots were counted using an 

automated ELISPOT reader (Immunospot; Cellular Technology Limited). The number of IFN-g-

producing cells was expressed as spot-forming cells (SFC) relative to 1 x 105 PBMCs. Values were 

calculated by subtracting the number of spots detected in the nonstimulated control wells. 

Values were considered positive if they were equal or greater than 5 spots and at least 2 times 

above the means of the unstimulated control wells. 

 

Luminex 

Plasma from 49 patients and 4 controls was diluted 1:2 with PBS and probed with the Immune 

Monitoring 65-Plex Human ProcartaPlex Panel (Invitrogen) and Human Luminex Performance 

Assay Base Kit, MMP Panel (R & D systems). Samples or standards were incubated with 

fluorescent-coded magnetic beads, which had been pre-coated with respective capture 

antibodies. After an overnight incubation at 4°C with shaking, plates were washed twice with 

wash buffer. Biotinylated detection antibodies were incubated with the complex for 30 mins and 

subsequently Streptavidin-PE was added and incubated for another 30 mins. Plates were washed 

twice again, and beads were re-suspended with sheath fluid before acquiring on the FLEXMAP® 

3D (Luminex). Data acquisition was done using xPONENT® 4.0 (Luminex) acquisition software and 

data analysis was done using Bio-Plex Manager™ 6.1.1 (Bio-Rad). Standard curves were 

generated with a 5-parameter logistic algorithm. Cytokine concentrations were transformed with 

log10 transformation prior to analysis. 
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To generate PCA analysis, only cytokines for which there were n ³30 results within the 

range of accurate detection were selected for analysis. Any out of range values for these 46 

cytokines were substituted with the minimum or maximum detected values of the respective 

analyte. 

Abbreviations: BLC, B lymphocyte chemoattractant; HGF, hepatocyte growth factor; I-TAC, 

Interferon-inducible T cell alpha chemoattractant; IP-10, IFN-g-induced protein 10; LIF, leukemia 

inhibitory factor; MCP-1, monocyte chemoattractant protein 1; MIG, monokine induced by IFN-

g; TNF-RII, Tumor necrosis factor receptor 2. 

 

Statistical Analyses 

Changes in cell frequencies over time were determined by the Kruskal-Wallis test, followed by 

Dunn’s Post-hoc test. For changes in log10 cytokine concentrations, one-way ANOVA was applied, 

followed by Tukey’s Post-hoc test. p-values were corrected with the Benjamini-Hochberg (BH) 

method. For visual clarity, boxplot figures only show parameters where Dunn’s post-hoc test or 

Tukey’s Post-hoc test resulted in BH corrected p-values <0.05 (Table S3, S4). Graph annotations 

are as follows: * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 

The network analysis combined clinical information, frequencies of cell subsets from mass 

cytometry analysis, and plasma cytokine measurements (Table S6). To ensure relevance to 

dengue infection, conditions for inclusion of a parameter were Kruskal-Wallis or ANOVA test 

results with an uncorrected p-value of <0.05 and minimum unique values ³ 5. Spearman’s 

correlations, Kruskal Wallis tests, and Fisher exact tests were performed where applicable. Only 
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results where Spearman’s correlations Rho2 value >0.667, and BH corrected p-values <0.05 were 

included in the building of the network graph. 
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