118,925 research outputs found

    Gauge Theory of Gravity Requires Massive Torsion Field

    Get PDF
    One of the greatest unsolved issues of the physics of this century is to find a quantum field theory of gravity. According to a vast amount of literature unification of quantum field theory and gravitation requires a gauge theory of gravity which includes torsion and an associated spin field. Various models including either massive or massless torsion fields have been suggested. We present arguments for a massive torsion field, where the probable rest mass of the corresponding spin three gauge boson is the Planck mass.Comment: 3 pages, Revte

    Kondo Effect and Josephson Current through a Quantum Dot between Two Superconductors

    Full text link
    We investigate the supercurrent through a quantum dot for the whole range of couplings using the numerical renormalization group method. We find that the Josephson current switches abruptly from a π\pi- to a 0-phase as the coupling increases. At intermediate couplings the total spin in the ground state depends on the phase difference between the two superconductors. Our numerical results can explain the crossover in the conductance observed experimentally by Buitelaar \textit{et al.} [Phys. Rev. Lett. \textbf{89}, 256 801 (2002)].Comment: Fig.2 and corresponding text have been changed; Several other small change

    Slum health: diseases of neglected populations.

    Get PDF
    BackgroundUrban slums, like refugee communities, comprise a social cluster that engenders a distinct set of health problems. With 1 billion people currently estimated to live in such communities, this neglected population has become a major reservoir for a wide spectrum of health conditions that the formal health sector must deal with.DiscussionUnlike what occurs with refugee populations, the formal health sector becomes aware of the health problems of slum populations relatively late in the course of their illnesses. As such, the formal health sector inevitably deals with the severe and end-stage complications of these diseases at a substantially greater cost than what it costs to manage non-slum community populations. Because of the informal nature of slum settlements, and cultural, social, and behavioral factors unique to the slum populations, little is known about the spectrum, burden, and determinants of illnesses in these communities that give rise to these complications, especially of those diseases that are chronic but preventable. In this article, we discuss observations made in one slum community of 58,000 people in Salvador, the third largest city in Brazil, to highlight the existence of a spectrum and burden of chronic illnesses not likely to be detected by the formal sector health services until they result in complications or death. Lack of health-related data from slums could lead to inappropriate and unrealistic allocation of health care resources by the public and private providers. Similar misassumptions and misallocations are likely to exist in other nations with large urban slum populations.SummaryContinued neglect of ever-expanding urban slum populations in the world could inevitably lead to greater expenditure and diversion of health care resources to the management of end-stage complications of diseases that are preventable. A new approach to health assessment and characterization of social-cluster determinants of health in urban slums is urgently needed

    Investigation of empennage buffeting

    Get PDF
    Theoretical methods of predicting aircraft buffeting are reviewed. For the buffeting due to leading edge vortex breakdown, a method is developed to convert test data of mean square values of fluctuating normal force to buffeting vortex strength through an unsteady lifting-surface theory and unsteady suction analogy. The resulting buffeting vortex from the leading edge extension of an F-18 configuration is used to generate a fluctuating flow field which produces unsteady pressure distribution on the vertical tails. The root mean square values of root bending moment on the vertical tails are calculated for a rigid configuration

    Quasiclassical Green function in an external field and small-angle scattering

    Get PDF
    The quasiclassical Green functions of the Dirac and Klein-Gordon equations in the external electric field are obtained with the first correction taken into account. The relevant potential is assumed to be localized, while its spherical symmetry is not required. Using these Green functions, the corresponding wave functions are found in the approximation similar to the Furry-Sommerfeld-Maue approximation. It is shown that the quasiclassical Green function does not coincide with the Green function obtained in the eikonal approximation and has a wider region of applicability. It is illustrated by the calculation of the small-angle scattering amplitude for a charged particle and the forward photon scattering amplitude. For charged particles, the first correction to the scattering amplitude in the non-spherically symmetric potential is found. This correction is proportional to the scattering angle. The real part of the amplitude of forward photon scattering in a screened Coulomb potential is obtained.Comment: 20 pages, latex, 1 figur

    3D Dirac semimetal Cd3As2: A review of material properties

    Full text link
    Cadmium arsenide (Cd3As2) - a time-honored and widely explored material in solid-state physics - has recently attracted considerable attention. This was triggered by a theoretical prediction concerning the presence of 3D symmetry-protected massless Dirac electrons, which could turn Cd3As2 into a 3D analogue of graphene. Subsequent extended experimental studies have provided us with compelling experimental evidence of conical bands in this system, and revealed a number of interesting properties and phenomena. At the same time, some of the material properties remain the subject of vast discussions despite recent intensive experimental and theoretical efforts, which may hinder the progress in understanding and applications of this appealing material. In this review, we focus on the basic material parameters and properties of Cd3As2, in particular those which are directly related to the conical features in the electronic band structure of this material. The outcome of experimental investigations, performed on Cd3As2 using various spectroscopic and transport techniques within the past sixty years, is compared with theoretical studies. These theoretical works gave us not only simplified effective models, but more recently, also the electronic band structure calculated numerically using ab initio methods.Comment: 16 pages, 16 figure

    Strongly coupled U(1) lattice gauge theory as a microscopic model of Yukawa theory

    Full text link
    Dynamical chiral symmetry breaking in a strongly coupled U(1) lattice gauge model with charged fermions and scalar is investigated by numerical simulation. Several composite neutral states are observed, in particular a massive fermion. In the vicinity of the tricritical point of this model we study the effective Yukawa coupling between this fermion and the Goldstone boson. The perturbative triviality bound of Yukawa models is nearly saturated. The theory is quite similar to strongly coupled Yukawa models for sufficiently large coupling except the occurrence of an additional state -- a gauge ball of mass about half the mass of the fermion.Comment: 4 page

    Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    Get PDF
    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper
    • …
    corecore