13,834 research outputs found
The Space Interferometry Mission Astrometric Grid Giant-Star Survey. III. Basic Stellar Parameters for an Extended Sample
We present results of high resolution (~ 55000) spectral observations of 830
photometrically pre-selected candidate red giants in the magnitude range of V =
9-12. We develop a pipeline for automated determination of the stellar
atmospheric parameters from these spectra and estimate T_eff, logg, [Fe/H],
microturbulence velocity, and projected rotational velocities, vsini, for the
stars. The analysis confirms that the candidate selection procedure yielded red
giants with very high success rate. We show that most of these stars are G and
K giants with slightly subsolar metallicity ([Fe/H] ~ -0.3 dex) An analysis of
Mg abundances in the sample results in consistency of the [Mg/Fe] vs [Fe/H]
trend with published results.Comment: Accepted by A
Reaction-Diffusion System in a Vesicle with Semi-Permeable Membrane
We study the Schloegl model in a vesicle with semi-permeable membrane. The
diffusion constant takes a smaller value in the membrane region, which prevents
the outflow of self-catalytic product. A nonequilibrium state is stably
maintained inside of the vesicle. Nutrients are absorbed and waste materials
are exhausted through the membrane by diffusion. It is interpreted as a model
of primitive metabolism in a cell.Comment: 8 pages, 6 figure
Brain tumour genetic network signatures of survival
Tumour heterogeneity is increasingly recognized as a major obstacle to
therapeutic success across neuro-oncology. Gliomas are characterised by
distinct combinations of genetic and epigenetic alterations, resulting in
complex interactions across multiple molecular pathways. Predicting disease
evolution and prescribing individually optimal treatment requires statistical
models complex enough to capture the intricate (epi)genetic structure
underpinning oncogenesis. Here, we formalize this task as the inference of
distinct patterns of connectivity within hierarchical latent representations of
genetic networks. Evaluating multi-institutional clinical, genetic, and outcome
data from 4023 glioma patients over 14 years, across 12 countries, we employ
Bayesian generative stochastic block modelling to reveal a hierarchical network
structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-
wildtype; oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma,
IDH- mutant. Our findings illuminate the complex dependence between features
across the genetic landscape of brain tumours, and show that generative network
models reveal distinct signatures of survival with better prognostic fidelity
than current gold standard diagnostic categories.Comment: Main article: 52 pages, 1 table, 7 figures. Supplementary material:
13 pages, 11 supplementary figure
General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems
An asymptotic method for finding instabilities of arbitrary -dimensional
large-amplitude patterns in a wide class of reaction-diffusion systems is
presented. The complete stability analysis of 2- and 3-dimensional localized
patterns is carried out. It is shown that in the considered class of systems
the criteria for different types of instabilities are universal. The specific
nonlinearities enter the criteria only via three numerical constants of order
one. The performed analysis explains the self-organization scenarios observed
in the recent experiments and numerical simulations of some concrete
reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E
(April 1st, 1996
High-Field Quasiparticle Tunneling in Bi_2Sr_2CaCu_2O_8+delta: Negative Magnetoresistance in the Superconducting State
We report on the c-axis resistivity rho_c(H) in Bi_2Sr_2CaCu_2O_{8+\delta}
that peaks in quasi-static magnetic fields up to 60 T. By suppressing the
Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity
\sigma_c (H), we find that the negative slope of \rho_c(H) above the peak is
due to quasiparticle tunneling conductivity \sigma_q(H) across the CuO_2 layers
below H_{c2}. At high fields (a) \sigma_q(H) grows linearly with H, and (b)
\rho_c(T) tends to saturate (sigma_c \neq 0) as T->0, consistent with the
scattering at the nodes of the d-gap. A superlinear sigma_q(H) marks the normal
state above T_c.Comment: 4p., 5 fig. (.eps), will be published in Phys. Rev. Let
Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium
The spatiotemporal dynamics of an excitable medium with multiple spiral
defects is shown to vary smoothly with system size from short-lived transients
for small systems to extensive chaos for large systems. A comparison of the
Lyapunov dimension density with the average spiral defect density suggests an
average dimension per spiral defect varying between three and seven. We discuss
some implications of these results for experimental studies of excitable media.Comment: 5 pages, Latex, 4 figure
Quiver Structure of Heterotic Moduli
We analyse the vector bundle moduli arising from generic heterotic
compactifications from the point of view of quiver representations. Phenomena
such as stability walls, crossing between chambers of supersymmetry, splitting
of non-Abelian bundles and dynamic generation of D-terms are succinctly encoded
into finite quivers. By studying the Poincar\'e polynomial of the quiver moduli
space using the Reineke formula, we can learn about such useful concepts as
Donaldson-Thomas invariants, instanton transitions and supersymmetry breaking.Comment: 38 pages, 5 figures, 1 tabl
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
Pitch then power: limitations to acceleration in quadrupeds
Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures—both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing maximal acceleration (and deceleration for ponies) in a competitive setting. We show that maximum acceleration and deceleration ability may be accounted for by two simple limits, one mechanical and one physiological. At low speed, acceleration and deceleration may be limited by the geometric constraints of avoiding net nose-up or tail-up pitching, respectively. At higher speeds, muscle power appears to limit acceleration
- …