22,146 research outputs found

    Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    Full text link
    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2^{+2} counterions, is studied. Experimentally, it is known that MgSO4_4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2^{+2} multivalent counterions. As Mg+2^{+2} concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2^{+2} concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA−-DNA short range attraction energies, mediated by Mg+2^{+2}, is found to be −-0.004 kBTk_BT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in aggreement qualitatively with values for tri- and tetra-valent counterions.Comment: 17 pages, 4 figures, improved manuscript. Submitted to J. Chem. Phys (2010

    Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    Get PDF
    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters

    Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility

    Get PDF
    Membrane fouling is closely related to the concept of critical flux. Therefore, a fouling control strategy for forward osmosis (FO) membranes that is based on the critical flux is necessary. This study systematically investigated the critical flux behavior of FO membranes (CTA and PA-TFC) in the short-term using a stepping method (draw solution (DS) concentration stepping). In addition, to test the reliability of this method, long-term experiments were conducted to evaluate the influences of operational critical flux on the fouling behavior (sustainable operation and fouling reversibility/irreversibility), thereby determining the critical flux for reversibility. Our results showed that the DS concentration stepping could be applied for critical flux determination in FO. Both membranes exhibited higher critical flux values for alginate fouling compared to other single foulants such as colloidal silica or gypsum. The values were 15.9 LMH for a cellulose triacetate membrane (CTA) and 20.5 LMH for the polyamide thin-film composite (PA-TFC). Whilst these values should be adequate in FO applications they were determined for single foulants. The presence of multispecies of foulants caused a significant decline in the critical flux values. This study found 5.4 LMH for the CTA membrane and 8.3 LMH for the PA-TFC membrane for the combined foulants of alginate + gypsum. This indicates that the critical flux behavior in FO was dependent on the foulant type and membrane type. Importantly, the high restoration of water flux was achieved with the PA-TFC membrane at an operation either close to critical flux (92–98%) or below critical flux (98–100%) (i.e., with negligible irreversible fouling). The critical fluxes for reversibility obtained in this study will aid the efficient operation of practical FO processes

    A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, lethal malignancy that invades adjacent vasculatures and spreads to distant sites before clinical detection. Although invasion into the peripancreatic vasculature is one of the hallmarks of PDAC, paradoxically, PDAC tumors also exhibit hypovascularity. How PDAC tumors become hypovascular is poorly understood. We describe an organotypic PDAC-on-a-chip culture model that emulates vascular invasion and tumor-blood vessel interactions to better understand PDAC-vascular interactions. The model features a 3D matrix containing juxtaposed PDAC and perfusable endothelial lumens. PDAC cells invaded through intervening matrix, into vessel lumen, and ablated the endothelial cells, leaving behind tumor-filled luminal structures. Endothelial ablation was also observed in in vivo PDAC models. We also identified the activin-ALK7 pathway as a mediator of endothelial ablation by PDAC. This tumor-on-a-chip model provides an important in vitro platform for investigating the process of PDAC-driven endothelial ablation and may provide a mechanism for tumor hypovascularity.R01 EB000262 - NIBIB NIH HHS; TL1 TR001410 - NCATS NIH HHS; UC4 DK104196 - NIDDK NIH HHS; UH3 EB017103 - NIBIB NIH HHSPublished versio

    Comprehensive User Engagement Sites (CUES) in Philadelphia: A Constructive Proposal

    Get PDF
    This paper is a study about Philadelphia’s comprehensive user engagement sites (CUESs) as the authors address and examine issues related to the upcoming implementation of a CUES while seeking solutions for its disputed questions and plans. Beginning with the federal drug schedules, the authors visit some of the medical and public health issues vis-à-vis safe injection facilities (SIFs). Insite, a successful Canadian SIF, has been thoroughly researched as it represents a paradigm for which a Philadelphia CUES can expand upon. Also, the existing criticisms against SIFs are revisited while critically unpackaged and responded to in favor of the establishment. In the main section, the authors propose the layout and services of the upcoming CUES, much of which would be in congruent to Vancouver’s Insite. On the other hand, the CUES would be distinct from Insite, as the authors emphasize, in that it will offer an information center run by individuals in recovery and place additional emphasis on early education for young healthcare professionals by providing them a platform to work at the site. The paper will also briefly investigate the implementation of a CUES site under an ethical scope of the Harm Reduction Theory. Lastly, the authors recommend some strategic plans that the Philadelphia City government may consider employing at this crucial stage

    Serially connected forward osmosis membrane elements of pressure-assisted forward osmosis-reverse osmosis hybrid system: Process performance and economic analysis

    Full text link
    © 2018 Elsevier B.V. Due to the improved dilution of draw streams, employing pressure-assisted forward osmosis (PAFO) to the hybrid system of forward osmosis (FO) followed by reverse osmosis (RO) for seawater desalination has been expected to reduce the overall economics. However, replacing FO with PAFO causes an additional energy cost in the seawater dilution step which inevitably leads to a question that PAFO-RO hybrid is truly an economically beneficial option. More importantly, though serial connection of FO elements improves the dilution of initial draw water, this economic benefit is also compensated with the additional membrane. To rationalize its overall performance and economic benefit, thorough performance and economic evaluations were conducted based on actual pilot-scale PAFO operations for serial connection of up to three 8040 FO elements. The results showed the FO-RO hybrid is not an economically feasible option unless a significant unit FO element cost cut-down is guaranteed. Meanwhile, PAFO-RO showed benefits with regards to target RO recovery and unit FO element cost, particularly when two FO elements are serially connected (SE2). It was found that PAFO-RO, indeed, has higher economic potential than FO-RO. A graphical overlapping method suggested in this work can help determine optimal serial configuration and operating conditions of PAFO-RO

    Detection of lithium in nearby young late-M dwarfs

    Full text link
    Late M-type dwarfs in the solar neighborhood include a mixture of very low-mass stars and brown dwarfs which is difficult to disentangle due to the lack of constraints on their age such as trigonometric parallax, lithium detection and space velocity. We search for young brown dwarf candidates among a sample of 28 nearby late-M dwarfs with spectral types between M5.0 and M9.0, and we also search for debris disks around three of them. Based on theoretical models, we used the color I−JI-J, the JJ-band absolute magnitude and the detection of the Li I 6708 A˚\AA doublet line as a strong constraint to estimate masses and ages of our targets. For the search of debris disks, we observed three targets at submillimeter wavelength of 850 μ\mum. We report here the first clear detections of lithium absorption in four targets and a marginal detection in one target. Our mass estimates indicate that two of them are young brown dwarfs, two are young brown dwarf candidates and one is a young very low-mass star. The closest young field brown dwarf in our sample at only ∼\sim15 pc is an excellent benchmark for further studying physical properties of brown dwarfs in the range 100−-150 Myr. We did not detect any debris disks around three late-M dwarfs, and we estimated upper limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Controllability and controller-observer design for a class of linear time-varying systems

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s10852-012-9212-6"In this paper a class of linear time-varying control systems is considered. The time variation consists of a scalar time-varying coefficient multiplying the state matrix of an otherwise time-invariant system. Under very weak assumptions of this coefficient, we show that the controllability can be assessed by an algebraic rank condition, Kalman canonical decomposition is possible, and we give a method for designing a linear state-feedback controller and Luenberger observer

    On heart rate regulation in cycle-ergometer exercise

    Full text link
    © 2014 IEEE. In this paper, we have focused on the issue of regulating the human heart rate (HR) to a predefined reference trajectory, especially for cycle-ergometer exercise used for training or rehabilitation. As measuring HR is relatively easy compared to exercise intensity, it has been used in the wide range of training programs. The aim of this paper is to develop a non-model-based control strategy using proportional, integral and derivative (PID) controller/relay controller to regulate the HR to track a desired trajectory. In the case of using PID controller, the controller output signal is interpreted as a voice or auditory command, referred to as biofeedback, which can be heard by the exercising subject as a part of the control-loop. Alternatively, the relay controller output signals can be converted to some special words which can be recognised by the exerciser. However, in both cases, to effectively communicate to the user a change in exercise intensity, the timing of this feedback signal relative to the positions of the pedals becomes quite critical. A feedback signal delivered when the pedals are not in a suitable position to efficiently exert force may be ineffective and may lead to a cognitive disengagement of the user form the feedback controller. In this paper we examine the need and the consequence of synchronising the delivery of the feedback signal with an optimal and user specific placement of the pedal
    • …
    corecore