146,436 research outputs found

    Spectral convexity for attractive SU(2N) fermions

    Get PDF
    We prove a general theorem on spectral convexity with respect to particle number for 2N degenerate components of fermions. The number of spatial dimensions is arbitrary, and the system may be uniform or constrained by an external potential. We assume only that the interactions are governed by an SU(2N)-invariant two-body potential whose Fourier transform is negative definite. The convexity result implies that the ground state is in a 2N-particle clustering phase. We discuss implications for light nuclei as well as asymmetric nuclear matter in neutron stars.Comment: 10 pages, 2 figures; references adde

    Nonequilibrium noise correlations in a point contact of helical edge states

    Full text link
    We investigate theoretically the nonequilibrium finite-frequency current noise in a four-terminal quantum point contact of interacting helical edge states at a finite bias voltage. Special focus is put on the effects of the single-particle and two-particle scattering between the two helical edge states on the fractional charge quasiparticle excitations shown in the nonequilibrium current noise spectra. Via the Keldysh perturbative approach, we find that the effects of the single-particle and the two-particle scattering processes on the current noise depend sensitively on the Luttinger liquid parameter. Moreover, the Fano factors for the auto- and cross correlations of the currents in the terminals are distinct from the ones for tunneling between the chiral edge states in the quantum Hall liquid. The current noise spectra in the single-particle-scattering-dominated and the two-particle-scattering-dominated regime are shown. Experimental implications of our results on the transport through the helical edges in two-dimensional topological insulators are discussed.Comment: 10 pages, 8 figure

    Search for Free Fractional Electric Charge Elementary Particles

    Get PDF
    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10−224.71\times10^{-22} particles per nucleon with 95% confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR

    Uniform materials and the multiplicative decomposition of the deformation gradient in finite elasto-plasticity

    Get PDF
    In this work we analyze the relation between the multiplicative decomposition F=FeFp\mathbf F=\mathbf F^{e}\mathbf F^{p} of the deformation gradient as a product of the elastic and plastic factors and the theory of uniform materials. We prove that postulating such a decomposition is equivalent to having a uniform material model with two configurations - total Ï•\phi and the inelastic Ï•1\phi_{1}. We introduce strain tensors characterizing different types of evolutions of the material and discuss the form of the internal energy and that of the dissipative potential. The evolution equations are obtained for the configurations (Ï•,Ï•1)(\phi,\phi_{1}) and the material metric g\mathbf g. Finally the dissipative inequality for the materials of this type is presented.It is shown that the conditions of positivity of the internal dissipation terms related to the processes of plastic and metric evolution provide the anisotropic yield criteria

    Light Gravitinos at Colliders and Implications for Cosmology

    Get PDF
    Light gravitinos, with mass in the eV to MeV range, are well-motivated in particle physics, but their status as dark-matter candidates is muddled by early-Universe uncertainties. We investigate how upcoming data from colliders may clarify this picture. Light gravitinos are produced primarily in the decays of the next-to-lightest supersymmetric particle, resulting in spectacular signals, including di-photons, delayed and non-pointing photons, kinked charged tracks, and heavy metastable charged particles. We find that the Tevatron with 20/fb and the 7 TeV LHC with 1/fb may both see evidence for hundreds of light-gravitino events. Remarkably, this collider data is also well suited to distinguish between currently viable light-gravitino scenarios, with striking implications for structure formation, inflation, and other early-Universe cosmology.Comment: 12 pages, 6 figures. To be submitted to Phys. Rev. D

    Large-scale Monte Carlo simulations of the isotropic three-dimensional Heisenberg spin glass

    Full text link
    We study the Heisenberg spin glass by large-scale Monte Carlo simulations for sizes up to 32^3, down to temperatures below the transition temperature claimed in earlier work. The data for the larger sizes show more marginal behavior than that for the smaller sizes, indicating the lower critical dimension is close to, and possibly equal to three. We find that the spins and chiralities behave in a quite similar manner.Comment: 8 pages, 8 figures. Replaced with published versio

    Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace

    Full text link
    We present a detailed study of the dynamic response of a ring of NN equally spaced Josephson junctions to a time-periodic external flux, including screening current effects. The dynamics are described by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, and we include Faraday's law for the flux. We find that the time-averaged I−VI-V characteristics show novel {\em subharmonic giant Shapiro voltage resonances}, which strongly depend on having phase slips or not, on NN, on the inductance and on the external drive frequency. We include an estimate of the possible experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques

    Extended scaling behavior of the spatially-anisotropic classical XY model in the crossover from three to two dimensions

    Get PDF
    The bivariate high-temperature expansion of the spin-spin correlation-function of the three-dimensional classical XY (planar rotator) model, with spatially-anisotropic nearest-neighbor couplings, is extended from the 10th through the 21st order. The computation is carried out for the simple-cubic lattice, in the absence of magnetic field, in the case in which the coupling strength along the z-axis of the lattice is different from those along the x- and the y-axes. It is then possible to determine accurately the critical temperature as function of the parameter R which characterizes the coupling anisotropy and to check numerically the universality, with respect to R, of the critical exponents of the three-dimensional anisotropic system. The analysis of our data also shows that the main predictions of the generalized scaling theory for the crossover from the three-dimensional to the two-dimensional critical behavior are compatible with the series extrapolations.Comment: 29 pages, 7 figure
    • …
    corecore