209 research outputs found
2007 Annual progress report synopsis of the Center for Structures of Membrane Proteins
A synopsis of the 2007 annual progress report for the Center for Structures of Membrane Proteins, a specialized center of the Protein Structure Initiative
An Oligodeoxynucleotide with Promising Modulation Activity for the Proliferation and Activation of Osteoblast
The paper explored the regulatory role of oligodeoxynucleotides (ODNs) with specific sequences in the proliferation and activation of osteoblast, using human osteoblast-like cell line MG 63 as the model. Through the administration of ODNs to MG 63 cells at a concentration of 1.0 μg/mL, ODN MT01 with positive effects on proliferation and activation of osteoblast was selected from 11 different ODNs by methyl thiazolyl tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity measurement. To get a deeper insight into the molecular mechanism, effects of ODN MT01 treatment on the expression level of Sp7, runx-2, collagen-I, osteoprotegerin (OPG) and RANK ligand (RANKL) were determined using quantitative real time PCR and Western blotting. Remarkably, the mRNA and protein expression levels of Sp7, runx-2, collagen-I and OPG were improved after ODN MT01 treatment. Meanwhile, the protein expression level of RANKL was dramatically decreased. These results suggested that ODN MT01 had a significant impact in facilitating osteogenic proliferation and activation, and provided a direct evidence for the notion that single strand ODN could regulate the balance of bone formation and resorption, and thus was of great potential in the rebuilding of alveolar bone
Quercetin Inhibits IL-1β-Induced Inflammation, Hyaluronan Production and Adipogenesis in Orbital Fibroblasts from Graves' Orbitopathy
Management of Graves' orbitopathy (GO) is challenging, as no reliable, specific, and safe medical therapeutic agents have yet been developed. We investigated the effect of quercetin in primary cultured orbital fibroblasts from GO, targeting pathways of inflammation, aberrant accumulation of extracellular matrix macromolecules, and adipose tissue expansion. Quercetin significantly attenuated intercellular adhesion molecule-1 (ICAM-1), interleukin (IL) -6, IL-8, and cyclooxygenase (COX) -2 mRNA expression, and inhibited IL-1β-induced increases in ICAM-1, IL-6, and IL-8 mRNA. Increased hyaluronan production induced by IL-1β or tumor necrosis factor-α was suppressed by quercetin in a dose- and time-dependent manner. Treatment with noncytotoxic doses of quercetin inhibited accumulation of intracytoplasmic lipid droplets and resulted in a dose-dependent decrease in expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and C/EBPβ proteins. In conclusion, inhibition of inflammation, hyaluronan production, and adipogenesis by the natural plant product quercetin in vitro provides the basis for further study of its potential use in the treatment of GO
Chromosome Size in Diploid Eukaryotic Species Centers on the Average Length with a Conserved Boundary
Understanding genome and chromosome evolution is important for understanding genetic inheritance and evolution. Universal events comprising DNA replication, transcription, repair, mobile genetic element transposition, chromosome rearrangements, mitosis, and meiosis underlie inheritance and variation of living organisms. Although the genome of a species as a whole is important, chromosomes are the basic units subjected to genetic events that coin evolution to a large extent. Now many complete genome sequences are available, we can address evolution and variation of individual chromosomes across species. For example, “How are the repeat and nonrepeat proportions of genetic codes distributed among different chromosomes in a multichromosome species?” “Is there a general rule behind the intuitive observation that chromosome lengths tend to be similar in a species, and if so, can we generalize any findings in chromosome content and size across different taxonomic groups?” Here, we show that chromosomes within a species do not show dramatic fluctuation in their content of mobile genetic elements as the proliferation of these elements increases from unicellular eukaryotes to vertebrates. Furthermore, we demonstrate that, notwithstanding the remarkable plasticity, there is an upper limit to chromosome-size variation in diploid eukaryotes with linear chromosomes. Strikingly, variation in chromosome size for 886 chromosomes in 68 eukaryotic genomes (including 22 human autosomes) can be viably captured by a single model, which predicts that the vast majority of the chromosomes in a species are expected to have a base pair length between 0.4035 and 1.8626 times the average chromosome length. This conserved boundary of chromosome-size variation, which prevails across a wide taxonomic range with few exceptions, indicates that cellular, molecular, and evolutionary mechanisms, possibly together, confine the chromosome lengths around a species-specific average chromosome length
Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx
Bone formation is a complex developmental process involving the differentiation of mesenchymal stem cells to osteoblasts. Osteoblast differentiation occurs through a multi-step molecular pathway regulated by different transcription factors and signaling proteins. Osx (also known as Sp7) is the only osteoblast-specific transcriptional factor identified so far which is required for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely and cartilage is normal. This opens a new window to the whole research field of bone formation. Osx inhibits Wnt pathway signaling, a possible mechanism for Osx to inhibit osteoblast proliferation. These reports demonstrate that Osx is the master gene that controls osteoblast lineage commitment and the subsequent osteoblast proliferation and differentiation. This review is to highlight recent progress in understanding the molecular mechanisms of transcriptional regulation of bone formation by Osx
Carrier Screening for Spinal Muscular Atrophy (SMA) in 107,611 Pregnant Women during the Period 2005–2009: A Prospective Population-Based Cohort Study
BACKGROUND: Spinal muscular atrophy (SMA) is the most common neuromuscular autosomal recessive disorder. The American College of Medical Genetics has recently recommended routine carrier screening for SMA because of the high carrier frequency (1 in 25-50) as well as the severity of that genetic disease. Large studies are needed to determine the feasibility, benefits, and costs of such a program. METHODS AND FINDINGS: This is a prospective population-based cohort study of 107,611 pregnant women from 25 counties in Taiwan conducted during the period January 2005 to June 2009. A three-stage screening program was used: (1) pregnant women were tested for SMA heterozygosity; (2) if the mother was determined to be heterozygous for SMA (carrier status), the paternal partner was then tested; (3) if both partners were SMA carriers, prenatal diagnostic testing was performed. During the study period, a total of 2,262 SMA carriers with one copy of the SMN1 gene were identified among the 107,611 pregnant women that were screened. The carrier rate was approximately 1 in 48 (2.10%). The negative predictive value of DHPLC coupled with MLPA was 99.87%. The combined method could detect approximately 94% of carriers because most of the cases resulted from a common single deletion event. In addition, 2,038 spouses were determined to be SMA carriers. Among those individuals, 47 couples were determined to be at high risk for having offspring with SMA. Prenatal diagnostic testing was performed in 43 pregnant women (91.49%) and SMA was diagnosed in 12 (27.91%) fetuses. The prevalence of SMA in our population was 1 in 8,968. CONCLUSION: The main benefit of SMA carrier screening is to reduce the burden associated with giving birth to an affected child. In this study, we determined the carrier frequency and genetic risk and provided carrier couples with genetic services, knowledge, and genetic counseling
Bidirectional Modulation of Alcohol-Associated Memory Reconsolidation through Manipulation of Adrenergic Signaling.
Alcohol addiction is a problem of great societal concern, for which there is scope to improve current treatments. One potential new treatment for alcohol addiction is based on disrupting the reconsolidation of the maladaptive Pavlovian memories that can precipitate relapse to drug-seeking behavior. In alcohol self-administering rats, we investigated the effects of bidirectionally modulating adrenergic signaling on the strength of a Pavlovian cue-alcohol memory, using a behavioral procedure that isolates the specific contribution of one maladaptive Pavlovian memory to relapse, the acquisition of a new alcohol-seeking response for an alcohol-associated conditioned reinforcer. The β-adrenergic receptor antagonist propranolol, administered in conjunction with memory reactivation, persistently disrupted the memory that underlies the capacity of a previously alcohol-associated cue to act as a conditioned reinforcer. By contrast, enhancement of adrenergic signaling by administration of the adrenergic prodrug dipivefrin at reactivation increased the strength of the cue-alcohol memory and potentiated alcohol seeking. These data demonstrate the importance of adrenergic signaling in alcohol-associated memory reconsolidation, and suggest a pharmacological target for treatments aiming to prevent relapse through the disruption of maladaptive memories.This work was supported by a UK Medical Research Council Programme Grant (G1002231) to BJE and ALM and was conducted in the Behavioural and Clinical Neuroscience Institute (BCNI), an initiative jointly funded by the MRC and the Wellcome Trust. MJWS was supported by an MRC Doctoral Training Grant and the James Baird Fund at the Medical School of the University of Cambridge. ALM was partly supported by a BCNI lectureship and the Ferreras-Willetts Fellowship from Downing College, Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2015.24
Redundancy and the Evolution of Cis-Regulatory Element Multiplicity
The promoter regions of many genes contain multiple binding sites for the same transcription factor (TF). One possibility is that this multiplicity evolved through transitional forms showing redundant cis-regulation. To evaluate this hypothesis, we must disentangle the relative contributions of different evolutionary mechanisms to the evolution of binding site multiplicity. Here, we attempt to do this using a model of binding site evolution. Our model considers binding sequences and their interactions with TFs explicitly, and allows us to cast the evolution of gene networks into a neutral network framework. We then test some of the model's predictions using data from yeast. Analysis of the model suggested three candidate nonadaptive processes favoring the evolution of cis-regulatory element redundancy and multiplicity: neutral evolution in long promoters, recombination and TF promiscuity. We find that recombination rate is positively associated with binding site multiplicity in yeast. Our model also indicated that weak direct selection for multiplicity (partial redundancy) can play a major role in organisms with large populations. Our data suggest that selection for changes in gene expression level may have contributed to the evolution of multiple binding sites in yeast. We conclude that the evolution of cis-regulatory element redundancy and multiplicity is impacted by many aspects of the biology of an organism: both adaptive and nonadaptive processes, both changes in cis to binding sites and in trans to the TFs that interact with them, both the functional setting of the promoter and the population genetic context of the individuals carrying them
Integration of Evolutionary Features for the Identification of Functionally Important Residues in Major Facilitator Superfamily Transporters
The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters
- …