13,212 research outputs found

    Quantized Adiabatic Charge Transport in a Carbon Nanotube

    Full text link
    The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW) is proposed as a vehicle to realize quantized adiabatic charge transport in a Luttinger liquid system. We demonstrate that electron backscattering by a periodic SAW potential, which results in miniband formation, can be achieved at energies near the Fermi level. Electron interaction, treated in a Luttinger liquid framework, is shown to enhance minigaps and thereby improve current quantization. Quantized SAW induced current, as a function of electron density, changes sign at half-filling.Comment: 5 pages, 2 figure

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    Z(2)-Singlino Dark Matter in a Portal-Like Extension of the Minimal Supersymmetric Standard Model.

    Get PDF
    We propose a Z2-stabilized singlino () as a dark matter candidate in extended and R-parity violating versions of the supersymmetric standard model. interacts with visible matter via a heavy messenger field S, which results in a supersymmetric version of the Higgs portal interaction. The relic abundance of can account for cold dark matter if the messenger mass satisfies GeV. Our model can be implemented in many realistic supersymmetric models such as the next-to-minimal supersymmetric (SUSY) standard model and nearly minimal SUSY standard model

    Unitarity, BRST Symmetry and Ward Identities in Orbifold Gauge Theories

    Full text link
    We discuss the use of BRST symmetry and the resulting Ward identities for orbifold gauge theories as consistency checks in an arbitrary number of dimensions. We verify that both the usual orbifold symmetry breaking and the recently proposed Higgsless symmetry breaking are consistent with the nilpotency of the BRST transformation. Imposing the Ward identities resulting from the BRST symmetry on the 4-point functions of theory, we obtain relations on the coupling constants that are shown to be equivalent to the conditions for tree level unitarity. We present the complete set of these sum rules also for inelastic scattering and discuss applications to 6-dimensional models and to incomplete matter multiplets on orbifold fixed points.Comment: 34 pages, LaTeX (feynmf.sty, url.sty and thophys.sty included), v2:references added, v3:typos corrected, sec.3 revise

    CO in Protostars (COPS): HerschelHerschel-SPIRE Spectroscopy of Embedded Protostars

    Get PDF
    We present full spectral scans from 200-670μ\mum of 26 Class 0+I protostellar sources, obtained with HerschelHerschel-SPIRE, as part of the "COPS-SPIRE" Open Time program, complementary to the DIGIT and WISH Key programs. Based on our nearly continuous, line-free spectra from 200-670 μ\mum, the calculated bolometric luminosities (LbolL_{\rm bol}) increase by 50% on average, and the bolometric temperatures (TbolT_{\rm bol}) decrease by 10% on average, in comparison with the measurements without Herschel. Fifteen protostars have the same Class using TbolT_{\rm bol} and LbolL_{\rm bol}/LsubmmL_{\rm submm}. We identify rotational transitions of CO lines from J=4-3 to J=13-12, along with emission lines of 13^{13}CO, HCO+^+, H2_{2}O, and [CI]. The ratios of 12^{12}CO to 13^{13}CO indicate that 12^{12}CO emission remains optically thick for JupJ_{\rm up} < 13. We fit up to four components of temperature from the rotational diagram with flexible break points to separate the components. The distribution of rotational temperatures shows a primary population around 100 K with a secondary population at \sim350 K. We quantify the correlations of each line pair found in our dataset, and find the strength of correlation of CO lines decreases as the difference between JJ-level between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles are consistent with this smooth distribution if each physical component contributes to a wide range of CO lines with significant overlap in the CO ladder. We investigate the spatial extent of CO emission and find that the morphology is more centrally peaked and less bipolar at high-JJ lines. We find the CO emission observed with SPIRE related to outflows, which consists two components, the entrained gas and shocked gas, as revealed by our rotational diagram analysis as well as the studies with velocity-resolved CO emission.Comment: 50 pages, 18 figures, accepted to ApJS. Revised for Table 6 and Figure

    Baryonium, tetra-quark state and glue-ball in large N_c QCD

    Full text link
    From the large-N_c QCD point of view, baryonia, tetra-quark states, hybrids, and glueballs are studied. The existence of these states is argued for. They are constructed from baryons. In N_f=1 large N_c QCD, a baryonium is always identical to a glueball with N_c valence gluons. The ground state 0^{-+} glueball has a mass about 2450 MeV. f_0(1710) is identified as the lowest 0^{++} glueball. The lowest four-quark nonet should be f_0(1370), a_0(1450), K^*_0(1430) and f_0(1500). Combining with the heavy quark effective theory, spectra of heavy baryonia and heavy tetra-quark states are predicted. 1/N_c corrections are discussed.Comment: 16 pages, 3 figure

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    A Unified Description of Cuprate and Iron Arsenide Superconductors

    Full text link
    We propose a unified description of cuprate and iron-based superconductivity. Consistency with magnetic structure inferred from neutron scattering implies significant constraints on the symmetry of the pairing gap for the iron-based superconductors. We find that this unification requires the orbital pairing formfactors for the iron arsenides to differ fundamentally from those for cuprates at the microscopic level.Comment: 12 pages, 10 figures, 2 table

    Competitions of magnetism and superconductivity in FeAs-based materials

    Full text link
    Using the numerical unrestricted Hartree-Fock approach, we study the ground state of a two-orbital model describing newly discovered FeAs-based superconductors. We observe the competition of a (0,π)(0, \pi) mode spin-density wave and the superconductivity as the doping concentration changes. There might be a small region in the electron-doping side where the magnetism and superconductivity coexist. The superconducting pairing is found to be spin singlet, orbital even, and mixed sxy_{xy} + dx2y2_{x^{2}-y^{2}} wave (even parity).Comment: 5 pages, 3 figure

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g
    corecore