11,012 research outputs found

    Multi-pulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout

    Get PDF
    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand the key element of all PQIP architectures is the beam splitter, which allows to coherently couple optical modes. Here we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time-bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long-distance quantum communications and quantum metrology.Comment: 4 pages, 3 figure

    Direct evidence for charge stripes in a layered cobalt oxide

    Get PDF
    Recent experiments indicate that static stripe-like charge order is generic to the hole-doped copper oxide superconductors and competes with superconductivity. Here we show that a similar type of charge order is present in La5/3 Sr1/3 CoO4 , an insulating analogue of the copper oxide superconductors containing cobalt in place of copper. The stripe phase we have detected is accompanied by short-range, quasi-one-dimensional, antiferromagnetic order, and provides a natural explanation for the distinctive hour- glass shape of the magnetic spectrum previously observed in neutron scattering mea- surements of La2−xSrx CoO4 and many hole-doped copper oxide superconductors. The results establish a solid empirical basis for theories of the hourglass spectrum built on short-range, quasi-static, stripe correlations

    An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas

    Full text link
    An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.Comment: 13 pages, 4 figure

    Permeability and acoustic velocity controlling factors determined from x-ray tomography images of carbonate rocks

    Get PDF
    Carbonate reservoir rocks exhibit a great variability in texture that directly impacts petrophysical parameters. Many exhibit bi- and multimodal pore networks, with pores ranging from less than 1 ÎŒm to several millimeters in diameter. Furthermore, many pore systems are too large to be captured by routine core analysis, and well logs average total porosity over different volumes. Consequently, prediction of carbonate properties from seismic data and log interpretation is still a challenge. In particular, amplitude versus offset classification systems developed for clastic rocks, which are dominated by connected, intergranular, unimodal pore networks, are not applicable to carbonate rocks. Pore geometrical parameters derived from digital image analysis (DIA) of thin sections were recently used to improve the coefficient of determination of velocity and permeability versus porosity. Although this substantially improved the coefficient of determination, no spatial information of the pore space was considered, because DIA parameters were obtained from two-dimensional analyses. Here, we propose a methodology to link local and global pore-space parameters, obtained from three-dimensional (3-D) images, to experimental physical properties of carbonate rocks to improve P-wave velocity and permeability predictions. Results show that applying a combination of porosity, microporosity, and 3-D geometrical parameters to P-wave velocity significantly improves the adjusted coefficient of determination from 0.490 to 0.962. A substantial improvement is also observed in permeability prediction (from 0.668 to 0.948). Both results can be interpreted to reflect a pore geometrical control and pore size control on P-wave velocity and permeability

    Super-Yang-Mills and M5-branes

    Full text link
    We uplift 5-dimensional super-Yang-Mills theory to a 6-dimensional gauge theory with the help of a space-like constant vector ηM\eta^M, whose norm determines the Yang-Mills coupling constant. After the localization of ηM\eta^M the 6D gauge theory acquires Lorentzian invariance as well as scale invariance. We discuss KK states, instantons and the flux quantization. The 6D theory admits extended solutions like 1/2 BPS `strings' and monopoles.Comment: 15 pages; minor changes, to appear in JHE

    BPS dyons and Hesse flow

    Full text link
    We revisit BPS solutions to classical N=2 low energy effective gauge theories. It is shown that the BPS equations can be solved in full generality by the introduction of a Hesse potential, a symplectic analog of the holomorphic prepotential. We explain how for non-spherically symmetric, non-mutually local solutions, the notion of attractor flow generalizes to gradient flow with respect to the Hesse potential. Furthermore we show that in general there is a non-trivial magnetic complement to this flow equation that is sourced by the momentum current in the solution.Comment: 25 pages, references adde

    Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules

    Get PDF
    THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    First direct observation of Dirac fermions in graphite

    Full text link
    Originating from relativistic quantum field theory, Dirac fermions have been recently applied to study various peculiar phenomena in condensed matter physics, including the novel quantum Hall effect in graphene, magnetic field driven metal-insulator-like transition in graphite, superfluid in 3He, and the exotic pseudogap phase of high temperature superconductors. Although Dirac fermions are proposed to play a key role in these systems, so far direct experimental evidence of Dirac fermions has been limited. Here we report the first direct observation of massless Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H in graphite, coexisting with quasiparticles with parabolic dispersion near another BZ corner K. In addition, we report a large electron pocket which we attribute to defect-induced localized states. Thus, graphite presents a novel system where massless Dirac fermions, quasiparticles with finite effective mass, and defect states all contribute to the low energy electronic dynamics.Comment: Nature Physics, in pres

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • 

    corecore