95,167 research outputs found

    Spin Correlations in the Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb2MnF4

    Full text link
    We report a neutron scattering study of the instantaneous spin correlations in the two-dimensional spin S=5/2 square-lattice Heisenberg antiferromagnet Rb_2MnF_4. The measured correlation lengths are quantitatively described, with no adjustable parameters, by high-temperature series expansion results and by a theory based on the quantum self-consistent harmonic approximation. Conversely, we find that the data, which cover the range from about 1 to 50 lattice constants, are outside of the regime corresponding to renormalized classical behavior of the quantum non-linear sigma model. In addition, we observe a crossover from Heisenberg to Ising critical behavior near the Neel temperature; this crossover is well described by a mean-field model with no adjustable parameters.Comment: 8 pages, LaTeX, with 6 included EPS figures, submitted to EPJ

    Report of the ultraviolet and visible sensors panel

    Get PDF
    In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies

    The Lorentz force in atmospheres of CP stars: 56 Arietis

    Full text link
    The presence of electric currents in the atmospheres of magnetic chemically peculiar (mCP) stars could bring important theoretical constrains about the nature and evolution of magnetic field in these stars. The Lorentz force, which results from the interaction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of pressure-sensitive spectroscopic features, that can be analysed using phase-resolved spectroscopic observations. In this work we continue the presentation of results of the magnetic pressure studies in mCP stars focusing on the high-resolution spectroscopic observations of Bp star 56Ari. We have detected a significant variability of the Halpha, Hbeta, and Hgamma spectral lines during full rotation cycle of the star. Then these observations are interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. We used the LLmodels stellar model atmosphere code for the calculation of the magnetic pressure effects in the atmosphere of 56Ari taking into account realistic chemistry of the star and accurate computations of the microscopic plasma properties. The Synth3 code was employed to simulate phase-resolved variability of Balmer lines. We demonstrate that the model with the outward-directed Lorentz force in the dipole+quadrupole configuration is likely to reproduce the observed hydrogen lines variation. These results present strong evidences for the presence of non-zero global electric currents in the atmosphere of this early-type magnetic star.Comment: Accepted by A&A, 9 pages, 7 figures, 2 table

    Complete trails of co-authorship network evolution

    Full text link
    The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via co-authorship relations, which can be tracked through digital records. Here, we use such co-authorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the co-authorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a tree-like giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the network's dynamic core. The observed patterns are successfully reproducible through a new network model

    Degenerate Four Virtual Soliton Resonance for KP-II

    Get PDF
    By using disipative version of the second and the third members of AKNS hierarchy, a new method to solve 2+1 dimensional Kadomtsev-Petviashvili (KP-II) equation is proposed. We show that dissipative solitons (dissipatons) of those members give rise to the real solitons of KP-II. From the Hirota bilinear form of the SL(2,R) AKNS flows, we formulate a new bilinear representation for KP-II, by which, one and two soliton solutions are constructed and the resonance character of their mutual interactions is studied. By our bilinear form, we first time created four virtual soliton resonance solution for KP-II and established relations of it with degenerate four-soliton solution in the Hirota-Satsuma bilinear form for KP-II.Comment: 10 pages, 5 figures, Talk on International Conference Nonlinear Physics. Theory and Experiment. III, 24 June-3 July, 2004, Gallipoli(Lecce), Ital

    Parabolic negative magnetoresistance in p-Ge/Ge1-xSix heterostructures

    Full text link
    Quantum corrections to the conductivity due to the weak localization (WL) and the disorder-modified electron-electron interaction (EEI) are investigated for the high-mobility multilayer p-Ge/Ge1-xSix heterostructures at T = (0.1 - 20.0)K in magnetic field B up to 1.5T. Negative magnetoresistance with logarithmic dependence on T and linear in B^2 is observed for B >= 0.1T. Such a behavior is attributed to the interplay of the classical cyclotron motion and the EEI effect. The Hartree part of the interaction constant is estimated (F_/sigma = 0.44) and the WL and EEI contributions to the total quantum correction /Delta /sigma at B = 0 are separated (/Delta /sigma_{WL} ~ 0.3/Delta /sigma; /Delta /sigma_{EEI} ~ 0.7/Delta /sigma).Comment: 3 pages, 4 figure

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
    corecore