191,231 research outputs found
Microstructural changes in Beta-silicon nitride grains upon crystallizing the grain-boundary glass
Crystallizing the grain boundary glass of a liquid phase sintered Si3N4 ceramic for 2 h or less at 1500 C led to formation of gamma Y2Si2O7. After 5 h at 1500 C, the gamma Y2Si2O7 had transformed to beta Y2Si2O7 with a concurrent dramatic increase in dislocation density within beta Si3N4 grains. Reasons for the increased dislocation density is discussed. Annealing for 20 h at 1500 C reduced dislocation densities to the levels found in as-sintered materials
Hardness of Graph Pricing through Generalized Max-Dicut
The Graph Pricing problem is among the fundamental problems whose
approximability is not well-understood. While there is a simple combinatorial
1/4-approximation algorithm, the best hardness result remains at 1/2 assuming
the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate
within a factor better than 1/4 under the UGC, so that the simple combinatorial
algorithm might be the best possible. We also prove that for any , there exists such that the integrality gap of
-rounds of the Sherali-Adams hierarchy of linear programming for
Graph Pricing is at most 1/2 + .
This work is based on the effort to view the Graph Pricing problem as a
Constraint Satisfaction Problem (CSP) simpler than the standard and complicated
formulation. We propose the problem called Generalized Max-Dicut(), which
has a domain size for every . Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-preserving reduction from
Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and
both our results are achieved through this reduction. Besides its connection to
Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own
right since in most arity two CSPs studied in the literature, SDP-based
algorithms perform better than LP-based or combinatorial algorithms --- for
this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page
Acetylene terminated matrix resins
The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications
Particle-in-cell and weak turbulence simulations of plasma emission
The plasma emission process, which is the mechanism for solar type II and
type III radio bursts phenomena, is studied by means of particle-in-cell and
weak turbulence simulation methods. By plasma emission, it is meant as a loose
description of a series of processes, starting from the solar flare associated
electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent
partial conversion of beam energy into the radiation energy by nonlinear
processes. Particle-in-cell (PIC) simulation is rigorous but the method is
computationally intense, and it is difficult to diagnose the results. Numerical
solution of equations of weak turbulence (WT) theory, termed WT simulation, on
the other hand, is efficient and naturally lends itself to diagnostics since
various terms in the equation can be turned on or off. Nevertheless, WT theory
is based upon a number of assumptions. It is, therefore, desirable to compare
the two methods, which is carried out for the first time in the present paper
with numerical solutions of the complete set of equations of the WT theory and
with two-dimensional electromagnetic PIC simulation. Upon making quantitative
comparisons it is found that WT theory is largely valid, although some
discrepancies are also found. The present study also indicates that it requires
large computational resources in order to accurately simulate the radiation
emission processes, especially for low electron beam speeds. Findings from the
present paper thus imply that both methods may be useful for the study of solar
radio emissions as they are complementary.Comment: 21 pages, 9 figure
Neural networks with dynamical synapses: from mixed-mode oscillations and spindles to chaos
Understanding of short-term synaptic depression (STSD) and other forms of
synaptic plasticity is a topical problem in neuroscience. Here we study the
role of STSD in the formation of complex patterns of brain rhythms. We use a
cortical circuit model of neural networks composed of irregular spiking
excitatory and inhibitory neurons having type 1 and 2 excitability and
stochastic dynamics. In the model, neurons form a sparsely connected network
and their spontaneous activity is driven by random spikes representing synaptic
noise. Using simulations and analytical calculations, we found that if the STSD
is absent, the neural network shows either asynchronous behavior or regular
network oscillations depending on the noise level. In networks with STSD,
changing parameters of synaptic plasticity and the noise level, we observed
transitions to complex patters of collective activity: mixed-mode and spindle
oscillations, bursts of collective activity, and chaotic behaviour.
Interestingly, these patterns are stable in a certain range of the parameters
and separated by critical boundaries. Thus, the parameters of synaptic
plasticity can play a role of control parameters or switchers between different
network states. However, changes of the parameters caused by a disease may lead
to dramatic impairment of ongoing neural activity. We analyze the chaotic
neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I.,
2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201
Critical phenomena and noise-induced phase transitions in neuronal networks
We study numerically and analytically first- and second-order phase
transitions in neuronal networks stimulated by shot noise (a flow of random
spikes bombarding neurons). Using an exactly solvable cortical model of
neuronal networks on classical random networks, we find critical phenomena
accompanying the transitions and their dependence on the shot noise intensity.
We show that a pattern of spontaneous neuronal activity near a critical point
of a phase transition is a characteristic property that can be used to identify
the bifurcation mechanism of the transition. We demonstrate that bursts and
avalanches are precursors of a first-order phase transition, paroxysmal-like
spikes of activity precede a second-order phase transition caused by a
saddle-node bifurcation, while irregular spindle oscillations represent
spontaneous activity near a second-order phase transition caused by a
supercritical Hopf bifurcation. Our most interesting result is the observation
of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single
nonlinear event that appears instantly from a low background activity with a
rapid onset, reaches a large amplitude, and ends up with an abrupt return to
lower activity. These spikes are similar to single paroxysmal spikes and sharp
waves observed in EEG measurements. Our analysis shows that above the
saddle-node bifurcation, sustained network oscillations appear with a large
amplitude but a small frequency in contrast to network oscillations near the
Hopf bifurcation that have a small amplitude but a large frequency. We discuss
an amazing similarity between excitability of the cortical model stimulated by
shot noise and excitability of the Morris-Lecar neuron stimulated by an applied
current.Comment: 15 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1304.323
A system for event-based film browsing
The recent past has seen a proliferation in the amount of digital video content being created and consumed. This is perhaps being driven by the increase in audiovisual quality, as well as the ease with which production, reproduction and consumption is now possible. The widespread use of digital video, as opposed its analogue counterpart, has opened up a plethora of previously impossible applications. This paper builds upon previous work that analysed digital video, namely movies, in order to facilitate presentation in an easily navigable manner. A film browsing interface, termed the MovieBrowser, is described, which allows users to easily locate specific portions of movies, as well as to obtain an understanding of the filming being perused. A number of experiments which assess the system’s performance are also presented
Indexing of fictional video content for event detection and summarisation
This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach
- …