8,686 research outputs found

    Nematic topological superconducting phase in Nb-doped Bi2Se3

    Get PDF
    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3

    Continuous use of fitness apps and shaping factors among college students: a mixed-method investigation

    Get PDF
    Objective: This current study pursued an exploration of the psychological mechanism that determines college students’ continuance intention to use fitness apps. Methods: This current study adopted a mixed methods research that composed two distinct phases. Study 1 was quantitative research that helped to identify determinants of Chinese college students’ continuance intention to use. A self-reported questionnaire was completed by 379 college students to ascertain their user experience. Study 2 was qualitative research. A semi-structured interview was conducted with a sample of 10 college students. Study 2 can be seen as a follow-up study and it pursued an in-depth understanding on how college students use fitness apps in the everyday life and their views towards study 1’s major findings. Results: The results revealed that five factors (confirmed usefulness, confirmed ease of use, satisfaction, fitness achievement and social connection) were found to significantly and positively affect college students’ continuous intention to use fitness apps. Entertainment did not show obvious impact. In the interview, college students reported that even if they don't obtain entertainment from fitness apps, they will still push themselves to use them, because they have a very specific goal when using fitness apps, which is to achieve health and fitness. Conclusion: These findings indicated that successful fitness apps should make users feel convenient to use and indeed improves the fitness user's efficiency. Besides, people are more eager to get the information with strong credibility with the negligible effort. This implies more efforts should be made to design apps that can provide high-quality services. Moreover, if apps designers can pay more attention to protecting the personal information and data, it will inspire more people to use social connection functions

    Effect of medications on prevention of secondary osteoporotic vertebral compression fracture, non-vertebral fracture, and discontinuation due to adverse events: a meta-analysis of randomized controlled trials

    Get PDF
    Background Bone loss with aging and menopause increases the risk of fragile vertebral fracture, osteoporotic vertebral compression fracture (OVCF). The fracture causes severe pain, impedes respiratory function, lower the quality of life, and increases the risk of new fractures and deaths. Various medications have been prescribed to prevent a secondary fracture, but few study summarized their effects. Therefore, we investigated their effects on preventing subsequent OVCF via meta-analyses of randomized controlled trials. Methods Electronic databases, including MEDLINE, EMBASE, CENTRAL, and Web of Science were searched for published randomized controlled trials from June 2015 to June 2019. The trials that recruited participants with at least one OVCF were included. We assessed the risk of bias of every study, estimated relative risk ratio of secondary OVCF, non-vertebral fracture, gastrointestinal complaints and discontinuation due to adverse events. Finally, we evaluated the quality of evidence. Results Forty-one articles were included. Moderate to high quality evidence proved the effectiveness of zoledronate (Relative Risk, RR: 0.34; 95% CI, 0.17–0.69, p = 0.003), alendronate (RR: 0.54; 95% CI: 0.43–0.68; p < 0.0001), risedronate (RR: 0.61; 95% CI: 0.51–0.73; p < 0.0001), etidronate (RR, 0.50; 95% CI, 0.29–0.87, p < 0.01), ibandronate (RR: 0.52; 95% CI: 0.38–0.71; p < 0.0001), parathyroid hormone (RR: 0.31; 95% CI: 0.23–0.41; p < 0.0001), denosumab (RR, 0.41; 95% CI, 0.29–0.57; p < 0.0001) and selective estrogen receptor modulators (Raloxifene, RR: 0.58; 95% CI: 0.44–0.76; p < 0.0001; Bazedoxifene, RR: 0.66; 95% CI: 0.53–0.82; p = 0.0002) in preventing secondary fractures. Moderate quality evidence proved romosozumab had better effect than alendronate (Romosozumab vs. alendronate, RR: 0.64; 95% CI: 0.49–0.84; p = 0.001) and high quality evidence proved that teriparatide had better effect than risedronate (risedronate vs. teriparatide, RR: 1.98; 95% CI: 1.44–2.70; p < 0.0001). Conclusion Zoledronate, alendronate, risedronate, etidronate, ibandronate, parathyroid hormone, denosumab and selective estrogen receptor modulators had significant secondary prevention effects on OVCF. Moderate quality evidence proved romosozumab had better effect than alendronate. High quality evidence proved PTH had better effect than risedronate, but with higher risk of adverse events.This work was supported by Mid-career Researcher Program through NRF grant (2016R1A2B3015048) funded by the Korea government (MSIP)

    Effect of Whitlockite as a new bone substitute for bone formation in spinal fusion and ectopic ossification animal model

    Get PDF
    Background Bone substrates like hydroxyapatite and tricalcium phosphate have been widely used for promoting spinal fusion and reducing the complications caused by autograft. Whitlockite has been reported to promote better bone formation in rat calvaria models compare with them, but no study investigated its effect on spinal fusion yet. Also, the higher osteoinductivity of whitlockite raised concern of ectopic ossification, which was a complication of spinal fusion surgery that should be avoided. Methods In this study, we compared the osteoinductivity of whitlockite, hydroxyapatite, and tricalcium phosphate porous particles with SD rat spine posterolateral fusion model and investigated whether whitlockite could induce ectopic ossification with SD rat abdominal pouch model. Results The micro-CT result from the posterolateral fusion model showed whitlockite had slightly but significantly higher percent bone volume than tricalcium phosphate, though none of the materials formed successful fusion with surrounding bone tissue. The histology results showed the bone formed on the cortical surface of the transverse process but did not form a bridge between the processes. The result from the abdominal pouch model showed whitlockite did not induce ectopic bone formation. Conclusion Whitlockite had a potential of being a better bone substrate hydroxyapatite and tricalcium phosphate in spinal fusion with low risk of inducing ectopic ossification.This study was supported by clinical research program funded by SMG-SNU Boramae Medical Center (03–2015-1)

    Endoscopic Submucosal Dissection for Gastric Epithelial Tumors: A Multicenter Study in Taiwan

    Get PDF
    Background/PurposeEndoscopic submucosal dissection (ESD) is an advanced endoscopic procedure to resect early gastric cancer (EGC). The purpose of this study was to determine the effectiveness and complications of ESD for gastric epithelial tumors in Taiwan.MethodsWe retrospectively analyzed the efficacy and outcome of ESD in patients who received ESD for gastric epithelial tumors between June 2004 and August 2007.ResultsA total of 70 patients with gastric epithelial tumors were treated by ESD. The mean age was 66.5 ±12.9 years (range, 35–84 years). The mean size of the gastric epithelial tumors was 1.85 ± 0.81 cm. The mean size of resected specimens was 3.26 ± 1.39 cm. The one-piece resection rate was 91.4% (64/70). The median operation time was 92.4 minutes. The complicating bleeding and perforation rates were 5.7% (4/70) and 4.3% (3/70), respectively. Emergency surgery was performed for three patients with perforations. The local recurrence rate of gastric cancer was 2.8%. Except for one patient who died of congestive heart failure and another who died of stroke, the remaining 68 patients (97.1%) survived.ConclusionESD is a promising local curative treatment option for EGC in Taiwan but it still carries risks of perforation and bleeding. The education and learning curve of endoscopists will improve the outcome of this procedure

    Systems engineering of a CHO cell line for enhanced process robustness

    Get PDF
    Recent advances in genome engineering have opened great opportunities for engineering Chinese hamster ovary cells. An ideal cell line is no longer just one with high productivity, but also with high stability in both the productivity and product quality, and in both extensive passaging and long term continuous culture. Furthermore, an ideal cell line should be provided with process controllability, allowing the use of environmental control variables to steer its metabolism to a reaction pathway that favors the synthesis of product with the desired quality attributes. Importantly, these superior traits must be genetically and epigenetically stable and be passed on to new production lines in cell line development. We have taken a systems approach that integrates genomic information and metabolic model predictions to devise a strategy and to develop tools for attaining those goals. In tool development we reassembled the Chinese hamster genome and combined different versions of the genome to identify consensus segments as high confidence regions and annotated the genome. An expression microarray and a comparative genomic hybridization array for gene coding regions were designed to facilitate cell engineering studies. Using solution phase capture and nested PCR we also established methods of rapidly identifying the integration sites of transgenes on the genome. An induced pluripotent stem cell (iPSC) line was derived from Chinese hamster embryonic fibroblasts for use as control in genomic and epigenomic tool development. Furthermore, we extended our kinetic model for cell metabolism to link with the glycosylation model and now embark on devising a reduced model suitable for systems optimization. The study involves surveying an established producing line and creating cell lines with a single copy transgene of GFP reporter or of IgG-GFP. The design of the single copy line entails a swappable recombination site for exchange of transgene so that cell lines which are otherwise “identical” but with different transgenes can be systematically compared. Through meta-analysis of archived transcriptome data we identified genes with different dynamics of expression patterns that can be useful for the dynamic control of cell behavior. CRISPR/Cas9 was employed to knock in a GFP between the first exon of the TXNIP gene and its endogenous promoter. Interestingly, the transcript levels of GFP in all investigated clones fell in a small range, but the dynamic profile was variable among them. In single copy clones of GFP reporter and IgG transgene, the transcript levels varied widely reflecting the probabilistic nature of their integration in the genome. The IgG titer and their transcript level of the clones also varied over a wide range. Overall, the result does not reveal a correlation between the transgene transcript level and the expression of the gene at the locus. Importantly, a number of clones showed a very high IgG transcript level, consistent with our previous report of a high transgene level prior to transgene amplification. The genomic context that may contribute to the variability, e.g. genomic consistency among the clones in terms of chromosome number, karyotype, and CGH, is being investigated. The implications of our findings to date and our work on implementing metabolic model prediction in this designing CHO cell line will be discussed. Although this work represents only an early step toward system engineering to cell line development, we believe such approaches will open new avenues to engineer cell lines and influence process development of biologics manufacturing in the coming years
    corecore