4,476 research outputs found

    Enhanced terahertz conductivity in ultra-thin gold film deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS)-coated Si substrates

    Get PDF
    Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm. Different aspects of MPTMS treatment for ultrathin gold films like its effect on the structure and optical properties at visible wavelengths have been investigated. However, the effect of the MPTMS treatment on electrical conductivity of ultra-thin gold film at terahertz frequency remains unexplored. Here, we measure the complex conductivity of nanometer-thick gold films deposited onto an MPTMS-coated silicon substrate using terahertz time-domain spectroscopy. Following the MPTMS treatment of the substrate, the conductivity of the films was found to increase compared to those deposited onto uncoated substrate for gold films having the thickness less than 11 nm. We observed 5-fold enhancement in the conductivity for a 7 nm-thick gold film. We also demonstrate the fabrication of nanoslot-antenna arrays in 8.2-nm-thick gold films. The nanoslot-antenna with MPTMS coating has resonance at around 0.5 THz with an electric field enhancement of 44, whereas the nanoslot-antenna without MPTMS coating does not show resonant properties. Our results demonstrate that gold films deposited onto MPTMS-coated silicon substrates are promising advanced materials for fabricating ultra-thin terahertz plasmonic devices

    Developmental programming of thermonastic leaf movement

    Get PDF
    Plants exhibit diverse polar behaviors in response to directional and non-directional environmental signals, termed tropic and nastic movements, respectively. The ways in which plants incorporate directional information into tropic behaviors is well understood, but it is less well understood how non-directional stimuli, such as ambient temperatures, specify the polarity of nastic behaviors. Here, we demonstrate that a developmentally programmed polarity of auxin flow underlies thermo-induced leaf hyponasty in Arabidopsis (Arabidopsis thaliana). In warm environments, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) stimulates auxin production in the leaf. This results in the accumulation of auxin in leaf petioles, where PIF4 directly activates a gene encoding the PINOID (PID) protein kinase. PID is involved in polarization of the auxin transporter PIN-FORMED 3 to the outer membranes of petiole cells. Notably, the leaf polarity-determining ASYMMETRIC LEAVES 1 (AS1) directs the induction of PID to occur predominantly in the abaxial petiole region. These observations indicate that the integration of PIF4-mediated auxin biosynthesis and polar transport, and the AS1-mediated developmental shaping of polar auxin flow, coordinate leaf thermonasty, which facilitates leaf cooling in warm environments. We believe that leaf thermonasty is a suitable model system for studying the developmental programming of environmental adaptation in plants

    Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements

    Get PDF
    Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 ?? 1020 molecules m???2) given a 1?? error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU)

    Relationship between labour productivity and design characteristics in high-rise buildings / Ha Duy Khanh, Young Dai Lee and Soo Yong Kim

    Get PDF
    Formwork installation, rebar fabrication/installation, and concrete casting are often repetitive in high-rise building projects. Previous studies have shown that labor productivity is significantly affected by many reasons. This study aims to consider the relationship between average labor productivity and design characteristics in typical floors of high-rise building projects. Data were collected through questionnaire which was distributed to experts and experienced people in construction projects. A neural network model was developed to estimate labor productivity. The main result is the comparison between predicted and actual labor productivity for typical floors. The Mean Absolute Percentage Errors (MAPE) are less than 3.5%, and R-squared indices are greater than 85% for all three activities mentioned above. These results showed that the model developed in this study is very appropriate when predicting labor productivity in high-rise building projects

    Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: A focus on impulsivity and compulsivity

    Get PDF
    Background and aims: The aim of the present study was to test the impulsivities and compulsivities of behavioral addictions, including Internet gaming disorder (IGD) and gambling disorder (GD), by directly comparing them with alcohol use disorder (AUD) and a healthy control (HC) group. Methods: We enrolled male patients who were diagnosed with IGD, GD or AUD, with 15 patients per group, as well as 15 HCs. Trait impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). The stop-signal test (SST) from the Cambridge Neuro-psychological Test Automated Battery (CANTAB) was used to assess the patients’ abilities to inhibit prepotent responses. Compulsivity was measured using the intra–extra dimensional set shift (IED) test from the CANTAB. The Trail Making Test (TMT) was also used in this study. Results: The IGD and AUD groups scored significantly higher on the BIS-11 as a whole than did the HC group (p = 0.001 and p = 0.001, respectively). The IGD and AUD groups also scored significantly higher on the BIS-11 as a whole than did the GD group (p = 0.006 and p = 0.001, respectively). In addition, the GD group made significantly more errors (p = 0.017 and p = 0.022, respectively) and more individuals failed to achieve criterion on the IED test compared with the IGD and HC groups (p = 0.018 and p = 0.017, respectively). Discussion: These findings may aid in the understanding of not only the differences in categorical aspects between individuals with IGD and GD but also in impulsivity–compulsivity dimensional domains. Conclusion: Additional studies are needed to elucidate the neurocognitive characteristics of behavioral addictive disorders in terms of impulsivity and compulsivity

    Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    Get PDF
    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures

    Ca2+ Regulates ERp57-Calnexin Complex Formation

    Get PDF
    ERp57, a member of the protein disulfide isomerase family, is a ubiquitous disulfide catalyst that functions in the oxidative folding of various clients in the mammalian endoplasmic reticulum (ER). In concert with ER lectin-like chaperones calnexin and calreticulin (CNX/CRT), ERp57 functions in virtually all folding stages from co-translation to post-translation, and thus plays a critical role in maintaining protein homeostasis, with direct implication for pathology. Here, we present mechanisms by which Ca2+ regulates the formation of the ERp57-calnexin complex. Biochemical and isothermal titration calorimetry analyses revealed that ERp57 strongly interacts with CNX via a non-covalent bond in the absence of Ca2+. The ERp57-CNX complex not only promoted the oxidative folding of human leukocyte antigen heavy chains, but also inhibited client aggregation. These results suggest that this complex performs both enzymatic and chaperoning functions under abnormal physiological conditions, such as Ca2+ depletion, to effectively guide proper oxidative protein folding. The findings shed light on the molecular mechanisms underpinning crosstalk between the chaperone network and Ca2+
    corecore