3,355 research outputs found

    The fate of the B ball

    Get PDF
    The gauge-mediated SUSY-breaking (GMSB) model needs entropy production at a relatively low temperature in the thermal history of the Universe for the unwanted relics to be diluted. This requires a mechanism for the baryogenesis after the entropy production, and the Affleck and Dine (AD) mechanism is a promising candidate for it. The AD baryogenesis in the GMSB model predicts the existence of the baryonic Q ball, that is the B ball, and this may work as the dark matter in the Universe. In this article, we discuss the stability of the B ball in th presence of baryon-number violating interactions. We find that the evaporation rate increases monotonically with the B-ball charge because the large field value inside the B ball enhances the effect of the baryon-number-violating operators. While there are some difficulties to evaluate the evaporation rate of the B ball, we derive the evaporation time (lifetime) of the B ball for the mass-to-charge ratio \omega_0\gsim 100 \MEV. The lifetime of the B ball and the distortion of the cosmic ray positron flux and the cosmic background radiation from the B ball evaporation give constraints on the baryon number of the B ball and the interaction, if the B ball is the dark matter. We also discuss some unresolved properties of the B ball.Comment: 27 pages incl 8 figs, LaTe

    Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.

    Get PDF
    The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant

    Double exchange-driven spin pairing at the (001) surface of manganites

    Full text link
    The (001) surface of La_{1-x}Ca_xMnO_3 system in various magnetic orderings is studied by first principle calculations. A general occurrence is that z^2 dangling bond charge -- which is ``invisible'' in the formal valence picture -- is promoted to the bulk gap/Fermi level region. This drives a double-exchange-like process that serves to align the surface Mn spin with its subsurface neighbor, regardless of the bulk magnetic order. For heavy doping, the locally ``ferromagnetic'' coupling is very strong and the moment enhanced by as much as 30% over the bulk value.Comment: 6 pages, 4 figure

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Half-Metallic Ferrimagnetism in Mn_2VAl

    Full text link
    We show that Mn_2VAl is a compound for which the generalized gradient approximation (GGA) to the exchange-correlation functional in density functional theory makes a qualitative change in predicted behavior compared to the usual local density approximation (LDA). Application of GGA leads to prediction of Mn_2VAl being a half-metallic ferrimagnet, with the minority channel being the conducting one. The electronic and magnetic structure is analyzed and contrasted with the isostructural enhanced semimetal Fe_2VAl.Comment: 5 pages, Latex, 6 postscript figures. Description and figures of the (minority) Fermi surfaces have been adde

    Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation

    Get PDF
    Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated.We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients' backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35).Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV

    Effects of polymer polydispersity on the phase behaviour of colloid-polymer mixtures

    Full text link
    We study the equilibrium behaviour of a mixture of monodisperse hard sphere colloids and polydisperse non-adsorbing polymers at their θ\theta-point, using the Asakura-Oosawa model treated within the free-volume approximation. Our focus is the experimentally relevant scenario where the distribution of polymer chain lengths across the system is fixed. Phase diagrams are calculated using the moment free energy method, and we show that the mean polymer size ξc\xi_{\rm c} at which gas-liquid phase separation first occurs decreases with increasing polymer polydispersity δ\delta. Correspondingly, at fixed mean polymer size, polydispersity favours gas-liquid coexistence but delays the onset of fluid-solid separation. On the other hand, we find that systems with different δ\delta but the same {\em mass-averaged} polymer chain length have nearly polydispersity-independent phase diagrams. We conclude with a comparison to previous calculations for a semi-grandcanonical scenario, where the polymer chemical potentials are imposed, which predicted that fluid-solid coexistence was over gas-liquid in some areas of the phase diagram. Our results show that this somewhat counter-intuitive result arose because the actual polymer size distribution in the system is shifted to smaller sizes relative to the polymer reservoir distribution.Comment: Changes in v2: sketch in Figure 1 corrected, other figures improved; added references to experimental work and discussion of mapping from polymer chain length to effective radiu

    Pseudogap and Superconducting Fluctuation in High-Tc Cuprates: Theory beyond 1-loop Approximation

    Full text link
    The pseudogap phenomena induced by the SC fluctuation are investigated in details. We perform a calculation beyond the 1-loop approximation. The SC fluctuation is microscopically derived on the basis of the repulsive Hubbard model. The vertex corrections are collected in the infinite order with use of the quasi-static approximation. The single-particle excitations, NMR 1/T_{1}T, spin susceptibility and superconducting transition temperature are discussed. The important role of the vertex correction is pointed out for the single particle spectral function. On the other hand, the validity of the 1-loop order theory is confirmed for other quantities. We shed light on the essential nature of SC fluctuation leading to the pseudogap from the comparison with spin and charge fluctuations

    Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV

    Get PDF
    A systematic study of energy spectra for light particles emitted at midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant non-thermal component consistent with a collective radial flow. This component is evaluated as a function of bombarding energy and event centrality. Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck (BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic
    corecore