63 research outputs found

    Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas aeruginosa PA14

    Get PDF
    Background: Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A\ufffdL) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the \ufffd\ufffdscaffolding\ufffd\ufffd polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A\ufffdL biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings: In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanyi type O:2a,c (Lanyi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-a-L-GalNAcA-(1\ufffd3)-a-D-QuiNAc-(1\ufffd3)- a-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic b-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ,20% of dry weight) of LPS-like material. Conclusions: We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is an abundant extracellular carbohydrate of PA14. We present evidence that LPS-like material is found as a component of a biofilm matrix of P. aeruginosa.Peer reviewed: YesNRC publication: Ye

    Human Umbilical Cord Blood-Derived CD34+ Cells Reverse Osteoporosis in NOD/SCID Mice by Altering Osteoblastic and Osteoclastic Activities

    Get PDF
    Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and decreased osteoblast activities is considered as an underlying cause of osteoporosis.The cures for osteoporosis are limited, consequently the potential of CD34+ cell therapies is currently being considered. We developed a nanofiber-based expansion technology to obtain adequate numbers of CD34(+) cells isolated from human umbilical cord blood, for therapeutic applications. Herein, we show that CD34(+) cells could be differentiated into osteoblastic lineage, in vitro. Systemically delivered CD34(+) cells home to the bone marrow and significantly improve bone deposition, bone mineral density and bone micro-architecture in osteoporotic mice. The elevated levels of osteocalcin, IL-10, GM-CSF, and decreased levels of MCP-1 in serum parallel the improvements in bone micro-architecture. Furthermore, CD34(+) cells improved osteoblast activity and concurrently impaired osteoclast differentiation, maturation and functionality.These findings demonstrate a novel approach utilizing nanofiber-expanded CD34(+) cells as a therapeutic application for the treatment of osteoporosis

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge

    Get PDF
    Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections

    Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council

    Global gene expression profiling of myeloid immune cell subsets in response to in vitro challenge with porcine circovirus 2b

    Get PDF
    Compelling evidence suggests that the early interaction between porcine circovirus 2 (PCV-2) and the innate immune system is the key event in the pathogenesis of Post-Weaning Multisystemic Wasting Syndrome (PMWS). Furthermore, PCV2 has been detected in bone-marrow samples, potentially enabling an easy spread and reservoir for the virus. To assess the gene-expression differences induced by an in-vitro PCV2b infection in different three different myeloid innate immune cell subsets generated from the same animal, we used the Agilent Porcine Gene Expression Microarray (V2). Alveolar macrophages (AMØs), monocyte-derived dendritic cells (MoDCs) and bone-marrow cells (BMCs) were generated from each animal, and challenged with a UK-isolate of a PCV2 genotype b-strain at a MOI of 0.5. Remarkably, analysis showed a highly distinct and cell-type dependent response to PCV2b challenge. Overall, MoDCs showed the most marked response to PCV2b challenge in vitro and revealed a key role for TNF in the interaction with PCV2b, whereas only few genes were affected in BMCs and AMØs. These observations were further supported by an enrichment of genes in the downstream NF-κB Signalling pathway as well as an up regulation of genes with pro-apoptotic functions post-challenge. PCV2b challenge increases the expression of a large number of immune-related and pro-apoptotic genes mainly in MoDC, which possibly explain the increased inflammation, granulomatous inflammation and lymphocyte depletion seen in PMWS-affected pigs
    • …
    corecore