1,455 research outputs found

    Strained graphene structures: from valleytronics to pressure sensing

    Full text link
    Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho

    Stroke from A Large Left Atrial Myxoma

    Get PDF
    A 36-year-old male involved in a car accident was found to have an embolic stroke due to a left atrial myxoma. Open heart surgery was delayed 4 weeks to decrease the risk of neurologic complications from the anticoagulation required for cardiopulmonary bypass. After resection of the myxoma, intraoperative transesophageal echocardiography found severe mitral regurgitation, which was repaired

    Different definition of sarcopenia and mortality in cancer: A meta-analysis

    Get PDF
    Objectives: Sarcopenia has been an emerging theme in clinical oncology. Various definitions of sarcopenia have been proposed, but their prognostic performance have yet to be evaluated and compared. The aim of this meta-analysis is to comprehensively evaluate the performance of different cutoff definitions of sarcopenia in cancer mortality prognostication. / Methods: This is a meta-analysis. Cohort studies on lean mass and mortality published before December 20, 2017 were obtained by systematic search on PubMed, Cochrane Library, and Embase. Inclusion criteria were cohort studies reporting binary lean mass categorized according to clearly defined cutoffs, and with all-cause mortality as study outcome. Studies were stratified according to the cutoff(s) used in defining low lean mass. The cutoff-specific hazard ratios (HRs) and 95% confidence intervals (CIs) of low lean mass on cancer mortality were pooled with a random-effects model and compared. / Results: Altogether 81 studies that studied binary lean mass were included. The pooled HRs on cancer mortality using the 3 most used definitions were: 1.74 (95% CI, 1.46–2.07) using the definition proposed by International Consensus of Cancer Cachexia, 1.45 (95% CI, 1.21–1.75) using that by Martin, and 1.58 (95% CI, 1.35–1.84) using that by Prado. The associations between sarcopenia and cancer mortality using other definitions were all statistically significant, despite different estimates were observed. / Conclusions: The association of low lean mass with increased mortality was consistent across different definitions; this provides further evidence on the poorer survival in cancer patients with sarcopenia. However, further studies evaluating the performance of each definition are warranted

    Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides

    Full text link
    Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminalmacrolactamring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collisioninduced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c\bullet/z from c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions {\eth}b0In{\TH}. We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z\bullet and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture

    Autoregulation of the Drosophila Noncoding roX1 RNA Gene

    Get PDF
    Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1+ roX2+) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell

    Posterior reversible encephalopathy syndrome in a child with cyclical vomiting and hypertension: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior reversible encephalopathy syndrome is characterized by headache, nausea and vomiting, seizures and visual disturbances. It has certain characteristic radiological features, which allow diagnosis in the appropriate clinical setting and enable appropriate clinical therapy to be instituted.</p> <p>Case presentation</p> <p>A 10-year-old Caucasian girl who was hospitalized due to recurrent vomiting was diagnosed as having posterior reversible encephalopathy syndrome after an initial diagnosis of cyclical vomiting and hypertension was made.</p> <p>Conclusion</p> <p>Posterior reversible encephalopathy syndrome is a rare disorder in children. Early recognition of characteristic radiological features is key to the diagnosis as clinical symptoms may be non-specific or mimic other neurological illnesses. To the best of our knowledge this is the first case to report an association between posterior reversible encephalopathy syndrome, cyclical vomiting and hypertension. Furthermore, in this case, the resolution of the abnormalities found on magnetic resonance imaging over time did not appear to equate with clinical recovery.</p

    Suppression of proline-directed protein kinase FAexpression inhibits the growth of human chronic myeloid leukaemia cells

    Get PDF
    Initial studies revealed that proline-directed protein kinase FA(PDPK FA) was overexpressed in various cancerous tissues relative to normal controls. However, the functional role of overexpressed PDPK FAin cancer remains to be established. In this report, we explore the potential role of PDPK FAin leukaemia cell growth by investigating the effects of partial inhibition of this kinase on the malignant phenotype of human chronic myeloid leukaemia cells (K562). Cloning of PDPK FAcDNA and its recombinant antisense expression vector and PDPK FA-specific antibody were successfully developed. Two stable antisense clones of K562 cells were subcloned which expressed 70% and 45% of PDPK FArespectively, compared with control-transfected clone in both immunoprecipitate activity assay and immunoblot analysis. In sharp contrast, these two antisense clones expressed no significant suppression of any other related PDPK family members, indicating the specificity of these two antisense clones. Moreover, these antisense clones proportionally and potentially exhibited cell growth retardation, poor clonogenic growth in soft agar and loss of serum independence. The results demonstrate that specific antisense suppression of PDPK FAis sufficient to interfere with the growth of K562 cells, indicating that PDPK FAis essential for human chronic myeloid leukaemia cell growth. © 2000 Cancer Research Campaig

    An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo

    Get PDF
    Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue

    Giant cell tumor of the temporal bone – a case report

    Get PDF
    BACKGROUND: Giant cell tumor is a benign but locally aggressive bone neoplasm which uncommonly involves the skull. The petrous portion of the temporal bone forms a rare location for this tumor. CASE PRESENTATION: The authors report a case of a large giant cell tumor involving the petrous and squamous portions of the temporal bone in a 26 year old male patient. He presented with right side severe hearing loss and facial paresis. Radical excision of the tumor was achieved but facial palsy could not be avoided. CONCLUSION: Radical excision of skull base giant cell tumor may be hazardous but if achieved is the optimal treatment and may be curative
    corecore