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Abstract

Background: A major health disparity suffered by African Americans (AA) is a predisposition toward fibrotic
diseases of the skin, lung, and other organs. We previously showed that healthy AA and scleroderma (systemic
sclerosis (SSc)) patient monocytes share biochemical and functional differences from control Caucasian (C)
monocytes that may predispose AA to SSc. The central difference is a decrease in caveolin-1. Low caveolin-1
levels promote monocyte migration, their differentiation into fibrocytes, and fibrocyte recruitment into fibrotic
tissues. Here we have greatly expanded our studies on the mechanism of action in fibrosis of caveolin-1 in AA
and SSc monocytes.

Results: Expression of chemokine receptors (CCR1, CCR2, CCR3) is enhanced in healthy AA monocytes compared to
healthy C monocytes and further increased in SSc monocytes. A parallel increase in function occurs assessed by
migration toward chemokines MCP-1 and MCP-3. Chemokine-receptor expression and function are inhibited by the
caveolin-1 scaffolding domain peptide (CSD) via its action as a surrogate for caveolin-1. Cells bearing chemokine
receptors accumulate to high levels in fibrotic lung and skin tissue from SSc patients and from mice treated with
bleomycin. This accumulation is almost completely blocked in mice treated with CSD. In signaling studies, Src
activation is enhanced in AA monocytes compared to C monocytes and further increased in SSc monocytes. Lyn
is also highly activated in SSc monocytes. Src and Lyn activation are inhibited by CSD. Src and Lyn's roles in
monocyte migration were demonstrated using specific inhibitors.

Conclusions: To the best of our knowledge, this is the first report that the expression and function of CCRT,
CCR2, and CCR3 are upregulated in monocytes from healthy AA and from SSc patients via molecular mechanisms
involving caveolin-1, Src/Lyn, and MEK/ERK. The results suggest that the migration/recruitment of monocytes and
fibrocytes into fibrotic tissues, mediated at least in part by CCR1, CCR2, and CCR3, plays a major role in the progression
of lung and skin fibrosis and in the predisposition of AA to fibrotic diseases. Our findings further suggest that
chemokine receptors and signaling molecules, particularly caveolin-1, that control their expression/function are
promising targets for treating fibrotic diseases.
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Background

A major health disparity affecting African Americans
(AA) is a predisposition toward fibrotic diseases of the
skin, lung, and other organs. AA scleroderma (systemic
sclerosis, SSc) patients have a younger age of disease on-
set, higher probability of the more severe diffuse cutane-
ous form of the disease, and higher mortality. AA SSc
patients are significantly more likely than Caucasian (C)
SSc patients to exhibit impaired lung function [1-8].
While there has been a considerable focus on AA SSc
patients, there have been few studies on underlying dif-
ferences between healthy AA and C that might explain
the predisposition of AA to SSc and interstitial lung dis-
ease (ILD). In one study, levels of the profibrotic cytokine
transforming growth factor f (TGFp) were twice as high
in serum from healthy AA compared to healthy C [9].

We recently identified several parameters in which
healthy AA are similar to SSc patients that may predis-
pose AA to fibrosing diseases, e.g., SSc [10]. The central
observation was a diminution in the master regulatory
protein caveolin-1 in monocytes from healthy AA com-
pared to healthy C. A greater loss of monocyte caveolin-
1 is linked to lung and skin fibrosis in bleomycin-treated
mice and in SSc-ILD and IPF patients [11-14]. The low
level of caveolin-1 in AA and SSc monocytes strongly pro-
motes their migration toward several chemokines and
their differentiation into a-smooth muscle actin (ASMA)-
positive fibrocytes. Both of these functions are blocked by
the caveolin-1 scaffolding domain peptide (CSD), which
enters cells and compensates for the lack of caveolin-1.

Monocyte migration in vitro models their recruitment
in vivo into tissues undergoing inflammation and fibrosis.
In both cases, chemokines provide a chemotactic signal to
cells by binding to their specific cell-surface receptors.
The molecular mechanism through which low caveolin-1
enhances monocyte migration involves the accumulation
of chemokine receptors such as CXCR4 and CCR5 [12, 15].
This accumulation may result from either enhanced ex-
pression or decreased turnover. Signaling downstream
from the chemokine receptor-ligand interaction is me-
diated by several pathways including G protein-coupled
receptor signaling, Src-family signaling, and MAPK
family signaling [16, 17]. Src-family kinases are also im-
portant in fibrosis due to their ability to regulate ECM
protein expression by dermal fibroblasts.

Here we expand our study of the regulation of AA and
SSc monocyte migration to additional chemokines, che-
mokine receptors, and signaling pathways. In particular,
we have studied chemokine receptors CCR1, CCR2, and
CCR3 and the chemokines MCP-1 (also known as CCL2,
binds to CCR2) and MCP-3 (also known as CCL7; binds
to CCR1, CCR2, and CCR3). Both MCP-1 and MCP-3 are
upregulated in SSc [18]. To the best of our knowledge,
this is the first report that the expression and function of
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CCR1, CCR2, and CCR3 are upregulated in monocytes
from healthy AA and from SSc patients via molecular
mechanisms involving caveolin-1, Src/Lyn, and MEK/ERK
signaling.

Results

CCR1, CCR2, and CCR3 expression and function are
enhanced in monocytes from healthy AA and SSc patients
We reported that expression of the chemokine receptor
CXCR4 is enhanced in healthy AA monocytes compared
to healthy C monocytes and that it is present at a still
higher level in SSc patient monocytes [10]. Similarly, we
showed enhanced CXCR4 function in that we observed
enhanced migration of healthy AA and SSc patient
monocytes toward the CXCR4 ligand SDF-1. To expand
on these studies, here we examine additional chemokine
receptors: CCR1, CCR2, and CCR3. Western blot ana-
lyses reveal increases in the expression of all three recep-
tors in AA and SSc monocytes (Fig. 1). As with CXCR4,
treatment of AA and SSc monocytes with CSD decreases
the expression of these chemokine receptors down to
the level observed in C monocytes (Fig. 1c, d). The re-
sults of these Western blot experiments were validated
in IHC experiments that demonstrated decreased levels
of caveolin-1 and increased levels of CCR1, CCR2, and
CCR3 in AA and SSc monocytes compared to C mono-
cytes (Fig. 2).

To determine whether chemokine receptor function is
also enhanced in healthy AA and SSc patient monocytes,
we evaluated monocyte migration toward chemokines
MCP-1, MCP-3, and SDF-1. Almost no migration occurred
in the absence of chemokines (Fig. 3, “Medium”). For each
chemokine, the basal rate of migration was higher for
healthy AA monocytes (Fig. 3b) than for healthy C mono-
cytes (Fig. 3a) and higher still for SSc monocytes (Fig. 3c),
especially for SDF-1 and MCP-1. When migration was
examined in cells activated with TGE[, again migration
toward each chemokine was higher for healthy AA
monocytes than for healthy C monocytes. In all cases,
migration was strongly inhibited when cells were
treated with CSD.

CCR1, CCR2, and CCR3 are upregulated in SSc patient
lung and skin tissue

Given that CCR1, CCR2, and CCR3 are upregulated on
SSc monocytes, we also compared their expression in
SSc and control lung and skin tissue. To begin to deter-
mine which cell types express these chemokine receptors
in SSc, these studies were performed as double-label ex-
periments with the monocyte/macrophage marker CD68
or with the collagen chaperone HSP47 (which serves as
a marker for fibrocytes and fibroblasts). Little staining
was observed in control tissue, except occasionally in al-
veolar macrophages; however, prevalent double staining
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Fig. 1 Enhanced CCR1, CCR2, and CCR3 expression in AA and SSc monocytes. a Extracts of monocytes from the indicated subjects (50 pg total
protein per lane) from a representative experiment were Western blotted using the indicated primary antibodies. GAPDH was used as the loading
control. b Densitometric quantification of CCR1, CCR2, and CCR3 levels in monocytes from the indicated subjects. Values for individual subjects
are shown (n = 7). ¢ Western blot of a representative experiment using the indicated primary antibodies in which monocytes were treated with
CSD (+) or control peptide (). GAPDH was used as the loading control. d The average level of CCR1, CCR2, or CCR3 in C monocytes treated with
control peptide was set to 100 arbitrary units. Bars show the mean + SEM from four independent experiments performed with cells from
different subjects. ***p < 0.002; **p < 0.01; *p < 0.05

was observed in SSc skin (Fig. 4, CD68 and chemokine  (Fig. 8) tissue was greatly enhanced compared to control
receptors; Fig. 5, HSP47 and chemokine receptors) and tissue. Treatment with CSD brought the level of expres-
lung tissue (Fig. 6, HSP47 and chemokine receptors). sion of CCR1, CCR2, and CCR3 down essentially to the
It may be noteworthy that among CCR1, CCR2, and level observed in control (saline-treated) animals (Figs. 7
CCR3/HSP47 double staining, CCR2 double staining and 8). These observations support the idea that CSD
was the most prominent in SSc skin (Fig. 5d) and the blocks the progression of fibrosis by inhibiting the re-
least prominent in SSc lung (Fig. 6d). In contrast, CCR2/  cruitment/accumulation in target tissues of cells express-
CD68 double staining was the least prominent in SSc  ing CCR1, CCR2, and/or CCR3.
(Fig. 4d).

Enhanced Src and Lyn activation in AA and SSc
Upregulation of CCR1, CCR2, and CCR3 in fibrotic mouse monocytes
tissues is reversed by CSD To identify signaling mechanisms responsible for the
We recently used a mouse model system in which bleo-  hypermigration of SSc and AA monocytes, we studied
mycin is delivered systemically by subcutaneously im-  kinases activated by chemokine-receptor interactions.
planted osmotic minipumps (Pump Model) to induce We demonstrated that ERK is activated in AA and SSc
fibrosis in multiple organs including lungs and skin [19], monocytes [10, 12]. Here we show that both Src and
and to demonstrate that the development of fibrosis in  Lyn are highly activated in SSc monocytes, and that Src,
both lungs and skin is blocked by treatment with CSD  but not Lyn, is also activated in AA monocytes (Fig. 9a, b).
[15, 20]. Here we examine the expression of CCR1, CSD treatment of monocytes inhibited Src and Lyn activa-
CCR2, and CCR3 in this murine bleomycin pump tion in SSc monocytes and Src activation in AA mono-
model. As in SSc patients, double staining for these mol-  cytes (Fig. 9c—e). Thus, Src and Lyn may be critical
ecules and HSP47 in fibrotic skin (Fig. 7) and lung players in the altered behavior of SSc and AA monocytes.
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Fig. 2 Demonstration by immunocytochemistry of increased Fig. 3 Migration toward various chemokines. Migration experiments
expression of CCR1, CCR2, and CCR3 and decreased expression of were performed as described in the “Methods” section using C (a),
caveolin-1 by AA and SSc monocytes. C, A, and SSc monocytes AA (b), or SSc (c) monocytes. Cells were treated with TGFB and CSD
were stained green for caveolin-1 (Cav-1) and red for CCR1 (a), CCR2 as indicated. Chemo.kmes used as chemoartract.ams (and medium
(b), or CCR3 (¢) as described in the “Methods” section. Nuclei were only control) are indicated. Data are expressed in terms of number
counterstained using DAPI (blue). Representative images are shown of m\g‘ratm‘g fCe||§ COtgﬂtef EEerrwhf\gh pfowe:jffwf\d. Btws E)bovtv t,he .
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each category. Bars = 5 pm category determined in independent experiments. ***p < 0.002;
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MEK/ERK and Src-family inhibitors inhibit monocyte
migration

To validate the functional importance of MEK/ERK and
Src/Lyn in monocyte migration, we used the MEK/ERK
inhibitor U0126 and Src/Lyn inhibitors PP2 and SU6656.
All these reagents significantly inhibited SSc monocyte

migration toward SDF-1, MCP-1 and MCP-3, although
not as effectively as CSD (Fig. 10a). Similarly, all these re-
agents significantly inhibited the migration of TGF[p-
activated C monocytes, although again, not as effectively
as CSD (Fig. 10b—d). Neither CSD nor these reagents
significantly inhibited the low level of basal migration
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Fig. 4 Overexpression of CCR1, CCR2, CCR3, and CD68 in scleroderma skin tissue. Control and SSc skin sections were double-stained for the
monocyte/macrophage marker CD68 (green) and for a CCR1, ¢ CCR2, or e CCR3 (red). Nuclei were counterstained using DAPI (blue). The indicated
fields in the third column are shown at high magnification in the fourth column. Note the enhanced expression of all of these proteins in SSc
skin compared to Control skin. Note (see arrows) that the green and red staining in double-labeled cells need not overlap. Similar results were
obtained in three independent samples in each category. b, d, f Quantification of staining. Representative fields were photographed at 400x
magnification. The number of double-positive cells (b, CCR1+/HSP47+; d, CCR2+/HSP47+; f, CCR3+/HSP47+) was counted in three subjects per
category, five high power fields (HPF) per subject. The data are presented in terms of the number of double-positive cells per HPF (average +
SEM). **p < 0.002; **p < 0.01; *p < 0.05

observed in control C monocytes not activated with  migration (data not shown). It is likely that CSD is more
TGEB. While CSD did significantly inhibit the migration effective than U0126, PP2, or SU6656 in inhibiting migra-
of control AA monocytes (not treated with TGFP) [10], tion because CSD inhibits multiple signaling cascades
U0126, PP2, and SU6656 did not significantly inhibit their ~ while each of these reagents inhibits only a single cascade.



Lee et al. Fibrogenesis & Tissue Repair (2015) 8:11 Page 6 of 14

>

CCR1/DAPI /IDAPI Merge (400x) Merge (1600x)

w

20
B I&," Fdk
& =
c > 15
o s
o +
S 10
o
w
I
*
E 5
@ D |
(V2] 0
> el
0660 ::J
¢

(@)

CCR2/DAPI IDAPI  Merge (400x)  Merge (1600x)

30 *kk

25

20

15
- - m

CCR3/DAPI IDAPI Merge (400x)  Merge (1600x)

w)

Control

CCR2+ HSP4T+ cells | HPF

SSc

m
M

20
—_ a
E E dekdk
] @ 15
o o
o v
S 10
o
w
=
&
& 5
Q 3]
N I
175 (]
o o~
& o
OQ

Fig. 5 Overexpression of CCR1, CCR2, CCR3, and HSP47 in scleroderma skin tissue. Control and SSc skin sections were double-stained for the
collagen chaperone HSP47 (green) and for a CCR1, ¢ CCR2, or e CCR3 (red). Nuclei were counterstained using DAPI (blue). The indicated fields
in the third column are shown at high magnification in the fourth column. Note the enhanced expression of all of these proteins in SSc skin
compared to Control skin. Note (see arrows) that the green and red staining in double-labeled cells need not overlap. Similar results were
obtained in three independent samples in each category. b, d, f Quantification of staining. Representative fields were photographed at 400x
magnification. The number of double-positive cells (b, CCR1+/HSP47+; d, CCR2+/HSP47+; f, CCR3+/HSP47+) was counted in three subjects per
category, five high power fields (HPF) per subject. The data are presented in terms of the number of double-positive cells per HPF (average +
SEM). ***p < 0.002; **p < 0.01; *p < 0.05

Discussion associated with monocytes from both SSc-ILD and
In previous studies, we showed that caveolin-1 levels are  healthy AA subjects include the enhanced expression of
low in monocytes from SSc patients and from healthy chemokine receptors CXCR4 and CCR5, enhanced mi-
AA compared to healthy C [10, 12]. Profibrotic features  gration toward their respective chemokine ligands (SDF-



Lee et al. Fibrogenesis & Tissue Repair (2015) 8:11 Page 7 of 14

A CCR1/DAPI IDAPI Merge (400x) Merge (1600x) B
30 *kk

° T2
€ s
o 3 20
&) ¥

E 15

uf 10

& 5
QO )
3 . !

C  CCR2/DAPI IDAPI  Merge (400x)  Merge (1600x) D

20
15 Fedkk
10
]
.
~
&
00

CCR3/DAPI IDAPI Merge (400x)  Merge (1600x) F

30 deded

25

20

15
- - - 10

Fig. 6 Overexpression of CCR1, CCR2, and CCR3 and HSP47 in scleroderma lung tissue. Control and SSc lung sections were double-stained for
HSP47 (green) and for a CCR1, ¢ CCR2, or e CCR3 (red). Nuclei were counterstained using DAPI (blue). The indicated fields in the third column are
shown at high magnification in the fourth column. Note the enhanced expression of all of these proteins in SSc lung compared to Control lung.
Note (see arrows) that the green and red staining in double-labeled cells need not overlap. Similar results were obtained in three independent
samples in each category. b, d, f Quantification of staining. Representative fields were photographed at 400x magnification. The number of
double-positive cells (b, CCR1+/HSP47+; d, CCR2+/HSP47+; f, CCR3+/HSP47+) was counted in three subjects per category, five high power fields
(HPF) per subject. The data are presented in terms of the number of double-positive cells per HPF (average + SEM). ***p < 0.002; **p < 0.01;

*p < 0.05

Control

m SSc
CCR2+ HSP4T7+ cells / HPF

Control

CCR3+ HSP47+ cells | HPF

SSc

1 for CXCR4, MIP-1a and MIP-1p for CCR5), and en- 1 function with the CSD. Here we greatly expand on
hanced differentiation into fibrocytes [10, 12, 19]. All of these studies, demonstrating: (1) the enhanced expres-
these features were linked to low caveolin-1 expression  sion of chemokine receptors CCR1, CCR2, and CCR3 by
by the fact that they were reversed by restoring caveolin- AA and SSc-ILD monocytes and the reversal of the
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Fig. 7 Overexpression of CCR1, CCR2, and CCR3 in fibrotic mouse skin is reversed by CSD. a Skin tissue sections from mice treated systemically
with bleomycin or vehicle and injected daily i.p. with CSD or vehicle were double-stained for CCR1, CCR2, or CCR3 (red) and for HSP47 (green).
Nuclei were counterstained using DAPI (blue). Note the enhanced expression of all of these proteins in the skin tissue of bleomycin-treated mice
and that CSD treatment almost completely blocked the accumulation of these proteins. Similar results were obtained in three independent mice
in each category. b—d Quantification of staining. Representative fields were photographed at 400x magnification. The number of double-positive

cells (b, CCR1+/HSP47+; ¢, CCR2+/HSP47+; d, CCR3+/HSP47+) was counted in three subjects per category, five high power fields (HPF) per
subject. The data are presented in terms of the number of double-positive cells per HPF (average + SEM). ***p < 0.002; **p < 0.01;

*» < 005

enhanced expression by restoring caveolin-1 function
with CSD; (2) the enhanced migration of AA and SSc-
ILD monocytes toward chemokines MCP-1 and MCP-3
and the reversal of the enhanced migration by CSD; (3)
enhanced Lyn/Src signaling in AA and SSc-ILD mono-
cytes, its reversal by CSD, and the use of specific in-
hibitors to demonstrate the regulation of monocyte

migration by Lyn/Src and MEK/ERK; (4) the overexpres-
sion of CCR1, CCR2, and CCR3 in SSc skin and lung tis-
sue; and (5) the overexpression of CCR1, CCR2, and
CCR3 in fibrotic murine skin and lung tissue generated
by systemic bleomycin delivery using implanted osmotic
minipumps, and the reversal of this overexpression by
treatment with CSD.
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Fig. 8 Overexpression of CCR1, CCR2, and CCR3 in fibrotic mouse lung tissue is reversed by CSD. a Lung tissue sections from mice treated

systemically with bleomycin or vehicle and injected daily i.p. with CSD or vehicle were stained for CCR1, CCR2, or CCR3 (red) and for HSP47 (green).
Nuclei were counterstained using DAPI (blue). Note the enhanced expression of all of these proteins in the lung tissue of bleomycin-treated mice

and that CSD treatment almost completely blocked the accumulation of these proteins. Similar results were obtained in three independent mice in
each category. b-d Quantification of staining. Representative fields were photographed at 400x magnification. The number of double-positive cells
(b, CCR1+/HSP47+; ¢, CCR2+/HSP47+; d, CCR3+/HSP47+) was counted in three subjects per category, five high power fields (HPF) per subject. The

data are presented in terms of the number of double-positive cells per HPF (average + SEM). ***p < 0.002; **p < 0.01; *p < 0.05

CCR1, CCR2, and CCR3 are expressed on a variety of
classes of leukocytes. Here we have focused on their ex-
pression by monocytes. To the best of our knowledge,
there have been few previous reports related to their
enhanced expression by monocytes from SSc patients
and healthy AA subjects. At the mRNA level, CCR1

expression was enhanced in monocytes from SSc pa-
tients with PAH [21, 22]. No data was presented at the
protein level. CCR2 expression detected by immunohis-
tochemistry was observed to be upregulated in early-
stage diffuse cutaneous SSc skin by a variety of cell
types including macrophages, myofibroblasts, pericytes,
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Fig. 9 Enhanced Src and Lyn expression/activation in AA and SSc monocytes. a Extracts of monocytes from the indicated subjects (50 ug total
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monocytes treated with control peptide was set to 100 arbitrary units. Note that both Src and Lyn are highly activated in SSc monocytes while
only Src is activated in AA monocytes. Bars show the mean + SEM from four independent experiments performed with cells from different
subjects. ***p < 0.002; **p < 0.01; *p < 0.05

lymphocytes, and endothelial cells [23]. We also find a
major upregulation of CCR2 in SSc skin in the fibrocyte-
fibroblast lineage (HSP47+ cells). Interestingly, the num-
ber of double-positive cells in this lineage in the lungs is
greater for CCR1 and CCR3 than for CCR2. Overall, com-
paring double staining with the monocyte/macrophage
marker CD68 to double staining with HSP47 suggests that
the various cell types that express chemokine receptors
accumulate differentially during fibrosis.

Although key receptors can be differentially expressed
on human and murine cells [24, 25], we find that CCR1,
CCR?2, and CCR3 are all expressed at high levels in both
human and mouse fibrotic skin and lung tissue. More-
over, we find that the overexpression of these receptors
is inhibited when mice are treated with CSD. Previous
studies in mouse model systems are also consistent with
the importance of these chemokine receptors in fibros-
ing disease. For example, antibodies against CCR1 deliv-
ered iv. enhanced the survival of mice treated with
bleomycin while inhibiting the accumulation in their
lungs of collagen and inflammatory cells [26]. Experiments
using CCR2 knockout mice demonstrated that CCR2
plays a major role in the recruitment of fibrocytes into the
airspace of mice in which fibrosis was induced using FITC
[27]. In yet another model, the overproduction of collagen

induced by injection of TGEP into the skin was signifi-
cantly reduced in CCR2 knockout mice [28].

Chemokines MCP-1 and MCP-3 are present at high
levels in the serum and bronchoalveolar lavage fluid of
SSc patients and are expressed at high levels by SSc fi-
broblasts [23, 29-32]. Among SSc patients, high levels
of MCP-1 and MCP-3 are associated with worse clinical
outcomes. In addition to their role as chemoattractants
of inflammatory cells into target tissues, MCP-1 and
MCP-3 may be important in fibrosis as initiators of
signaling cascades resulting in collagen overexpression
[18, 30, 33, 34]. While some studies show direct effects
of MCP-1 and MCP-3 on collagen expression by fibro-
blasts [30, 34, 35], another study proposes that MCP-1
indirectly promotes the expression of collagen by fibro-
blasts by activating the expression of IL-4 by T cells [33].
In turn, this IL-4 is responsible for increasing collagen
production by fibroblasts.

Relatively little is known about the signaling pathways
that link relative caveolin-1 deficiency in SSc and AA
monocytes to the enhanced ability of these cells to mi-
grate toward various chemokines and to differentiate
into fibrocytes. We reported the importance of MEK/
ERK signaling [10, 12] in these cell functions. Here we
have studied the Src-family kinases Src and Lyn. We find
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that Src and Lyn are hyperactivated in SSc monocytes
and that Src is activated in AA monocytes. In both cases,
Src and Lyn activation are reversed by treating cells with
CSD. In addition, we find that the Src/Lyn inhibitors
PP2 and SU6656 (as well as a MEK/ERK inhibitor
U0126) block the enhanced migration of SSc and AA
monocytes. Not surprisingly, CSD (which blocks mul-
tiple signaling pathways) was slightly more effective than
these inhibitors that block only one pathway. Src-family
kinases have been implicated in a variety of activities rele-
vant to monocyte biology including innate immune signal-
ing, responses to cytokines and growth factors, apoptosis,
and G protein-coupled signaling [36]. To the best of our

knowledge, the current study is the first to link caveolin-1,
Src-family signaling, and monocyte migration.

Caveolin-1 and Src have been studied more extensively
in other cell types in the context of SSc and fibrosis. Most
of these studies involve signaling initiated by TGEp. In
one study focusing on the role of urokinase-type plas-
minogen activator (uPA) and plasminogen activator in-
hibitor (PAI) in regulating the epithelial-mesenchymal
transformation (EMT) of alveolar type II epithelial cells
into myofibroblasts, it was proposed that CSD blocked
EMT by inhibiting Src leading to the enhanced expression
of uPA and the inhibition of PAI expression [37]. These
effects were observed whether EMT was induced by
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bleomycin, TGEFp, or cigarette smoke. Other studies
focus on fibroblasts. TGFP receptor internalized through
caveolin-1 lipid rafts undergoes rapid degradation, thereby
decreasing TGFp signaling [38]. This mechanism links
low caveolin-1 to enhanced TGFp signaling. It is note-
worthy that TGFp is present at high levels in the circula-
tion of healthy AA [9] and SSc patients [39], and TGFp
treatment decreases caveolin-1 levels in a variety of cell
types [12, 38]. Thus, the combination of low caveolin-1
and high TGEP may be particularly likely to cause fibrosis
because their effects appear to be mutually reinforcing.
Src has also been directly linked to TGEFP signaling.
Stimulation of human dermal fibroblasts with TGEp acti-
vated Src signaling [40]. Treatment of these cells with
SU6656 inhibited collagen expression both at the mRNA
and protein levels. Similarly, dermal fibrosis induced in
mice by bleomycin injection was inhibited by SU6656.
Finally, it was observed that TGFP can signal through
the Src family member c-Abl and that this signaling is
independent of canonical TGFP signaling through
Smad2/3 [41].

Conclusions

In summary, the current study strongly supports and ex-
tends our observations on the role of monocytes and
cells derived from monocytes (e.g., fibrocytes) in lung and
skin fibrosis and on the predisposition of AA to fibrotic
diseases. Our findings highlight the idea that chemokine
receptors (e.g., CCR1, CCR2, CCR3) and signaling mole-
cules that control their expression/function (e.g., caveolin-
1, MEK/ERK, Src/Lyn) are promising targets for novel
treatments for fibrotic diseases such as SSc.

Methods

Blood donors

Under a protocol approved by the Medical University of
South Carolina (MUSC) Institutional Review Board for
Human Research, SSc-ILD patients were recruited from
the MUSC Scleroderma Clinic. All patients provided
written informed consent before enrollment in the study,
fulfilled the American College of Rheumatology criteria
for SSc [42], and had evidence of ILD [12]. Demographic
data for SSc patients and healthy control donors are
summarized in Additional file 1: Tables S1 and S2. Note
that Additional file 1: Table S1 describes the combined
data for all the patients that participated in the entire
study, not the patients that participated in a particular
experiment.

PBMC and monocyte isolation

Peripheral blood mononuclear cells (PBMC) were isolated
by standard methods [12] by centrifugation on density
1.083 Histopaque cushions. Monocytes were isolated from
the PBMC by immunodepletion using a Dynal Monocyte
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Negative Isolation Kit (Invitrogen, Carlsbad, CA) resulting
in a cell population about 95 % Mac-1+ monocytes [12].

Peptide treatments

The CSD peptide (amino acids 82-101 of caveolin-1;
DGIWKASFTTFTVTKYWEFYR) was synthesized as a fu-
sion peptide to the C terminus of the Antennapedia In-
ternalization Sequence (RQIKIWFQNRRMKWKK). The
Antennapedia Internalization Sequence (AP) alone was
used as control peptide and showed no effect on cell be-
havior when compared to no added peptide. When treat-
ing cells with peptides, stock solutions of peptides (10
mM in 100 % DMSO) were diluted to the indicated final
concentrations.

Monocyte migration assays

Were performed as described [11]. Briefly, SDF-1 (100
ng/ml in RPMI 1640/1 % BSA), MCP-1 or MCP-3 (50
ng/ml in RPMI 1640/1 % BSA), or unsupplemented
RPMI 1640/1 % BSA were placed into the lower wells of
Neuro Probe Multiwell Chemotaxis Chambers (Neuro
Probe, Gaithersburg, MD) fitted with 5-pm pore size
polycarbonate filters. With or without TGF pretreatment
(45 min, 10 ng/ml in RPMI 1640/1 % BSA), 25 pl of cell
suspension (5 x 10° cells/ml) was placed in the upper
wells. Peptides (0.1 uM) or inhibitors (U0126, 0.1 uM;
PP2, 10 pM; SU6656, 10 pM) were added to the cell sus-
pension prior to placement in the upper chamber. After
incubation (2.5 h, 37 ° C, 5 % CQO,), filters were removed,
fixed, and stained with 4’,6-diamidino-2-phenylindole
(DAPI) (Invitrogen, Carlsbad, CA). Cells on the underside
of the membrane were photographed and counted in six
high power fields per condition.

Monocyte signaling/Western blots

Chemokine-receptor levels and levels of total and acti-
vated Src and Lyn were determined by Western blot of so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) sample buffer extracts of freshly isolated
monocytes. For CSD treatment, monocytes were cultured
overnight in 6-well tissue culture plates (2 x 10° cells per
well) in RPMI 1640/20 % fetal calf serum (FCS). Attached
cells were then treated for 3 h with fresh medium (RPMI/
1 % BSA) supplemented with 0.1 uM CSD or control pep-
tide. Cells were next washed twice with PBS then ex-
tracted with SDS-PAGE sample buffer. Western blots
were performed using the indicated antibodies.

Immunocytochemistry

Images were collected using a Leica DMI 4000B fluores-
cence microscope. To detect caveolin-1, CCR1, CCR2,
and CCR3, cells isolated as described above were cul-
tured overnight in 6-well tissue culture plates (1 x 10°
cells per well) on coverslips in RPMI 1640/20 % FCS.
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Cells were then fixed and permeabilized, labeled with
appropriate primary and secondary antibodies, and
counterstained with the nuclear stain DAPL
Immunohistochemistry of human lung tissue sections
was performed as described [11]. Briefly, paraffin sec-
tions were stained with primary antibodies, appropriate
AlexaFluor647- or AlexaFluor555-conjugated secondary
antibodies and the nuclear stain DAPI (Invitrogen, Carlsbad,
CA). Images were collected using a Leica DMI 4000B
fluorescence microscope. Primary antibodies were: rabbit
anti-CCR1 (Thermo Fisher Scientific, Rockford, IL, USA;
PA1-21629), rabbit anti-CCR2 (Abcam, Cambridge, MA,
USA; ab32144), rabbit anti-CCR3 (Abcam, Cambridge, MA,
USA; ab36827), rabbit anti-MCP-1 (Abcam, Cambridge,
MA, USA; ab 9669), rabbit anti-MCP-3 (Santa Cruz
Biotechnology, Santa Cruz, CA, USA; SC-374002), rabbit
anti-pSrc-Tyr416 (Cell Signaling Technology, Inc., Danvers,
MA, USA; #2101S), and rabbit anti-pLyn-Tyr507 (Cell
Signaling Technology, Inc., Danvers, MA, USA; 04—-375).

Mouse experiments

Mice were treated systemically with bleomycin or ve-
hicle and received CSD or vehicle as recently described
[15, 19]. These studies were performed under protocols
approved by the MUSC Institutional Animal Care and
Use Committee (AR#3134, AR#3029, AR#3323).

Statistical analyses

Immunoreactive bands were quantified by densitometry
using Image J 1.32 NIH software. Raw densitometric data
were processed and analyzed using Prism 3.0 (GraphPad
Software Inc.). ANOVA with post hoc Tukey’s test was
used to evaluate Western blots and monocyte migration.
In all figures, ***indicates p < 0.002, **indicates p < 0.01,
and *indicates p < 0.05.

Additional file

Additional file 1: Summary of human subject demographics and
Table S1 legend. Table S1. Clinical features of SSc patients. Table S2.
AA and Caucasian controls.

Abbreviations

AA: African American; ANA: antinuclear antibodies; ANOVA: analysis of
variance; AP: Antennapedia internalization sequence; ASMA: a-smooth
muscle actin; BSA: bovine serum albumin; C: Caucasian; CCL2: 7, Chemokine
(C-C motif) ligand 2, 7; CCR1: 2, 3, 5, C-C chemokine receptor types 1, 2, 3, 5;
CSD: caveolin-1 scaffolding domain peptide; CXCR4: C-X-C receptor type 4;
DAPI: 4'6-diamidino-2-phenylindole; DMSO: dimethylsulfoxide;

ECM: extracellular matrix; EMT: epithelial-mesenchymal transformation;

ERK: extracellular signal-regulated kinase; FCS: fetal calf serum;

FITC: fluorescein isothiocyanate; FVC: forced vital capacity; IL-4: interleukin-4;
ILD: interstitial lung disease; IPF: idiopathic pulmonary fibrosis;

MAPK: mitogen-activated protein kinase; MCP-1: MCP-3, monocyte
chemotactic protein-1, monocyte chemotactic protein-3; MEK: MAPK/ERK
kinase; MIP-1a: 3, macrophage inflammatory protein-1a, 3; MUSC: Medical
University of South Carolina; PAH: pulmonary arterial hypertension;

PAI: plasminogen activator inhibitor; PBMC: peripheral blood mononuclear
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cells; PBS: phosphate buffered saline; SDF-1: stromal derived factor-1, also
known as CXCL12; SDS-PAGE: sodium dodecy! sulfate-polyacrylamide gel
electrophoresis; SEM: standard error of the mean; SSc: scleroderma (systemic
sclerosis); TGF: transforming growth factor {3; uPA: urokinase-type
plasminogen activator.
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