859 research outputs found

    Reading Performance is Predicted by More Than Phonological Processing

    Get PDF
    We compared three phonological processing components (phonological awareness, rapid automatized naming and phonological memory), verbal working memory, and attention control in terms of how well they predict the various aspects of reading: word recognition, pseudoword decoding, fluency and comprehension, in a mixed sample of 182 children ages 8–12 years. Participants displayed a wide range of reading ability and attention control. Multiple regression was used to determine how well the phonological processing components, verbal working memory, and attention control predict reading performance. All equations were highly significant. Phonological memory predicted word identification and decoding. In addition, phonological awareness and rapid automatized naming predicted every aspect of reading assessed, supporting the notion that phonological processing is a core contributor to reading ability. Nonetheless, phonological processing was not the only predictor of reading performance. Verbal working memory predicted fluency, decoding and comprehension, and attention control predicted fluency. Based upon our results, when using Baddeley’s model of working memory it appears that the phonological loop contributes to basic reading ability, whereas the central executive contributes to fluency and comprehension, along with decoding. Attention control was of interest as some children with ADHD have poor reading ability even if it is not sufficiently impaired to warrant diagnosis. Our finding that attention control predicts reading fluency is consistent with prior research which showed sustained attention plays a role in fluency. Taken together, our results suggest that reading is a highly complex skill that entails more than phonological processing to perform well

    Internal waves in the Arctic : influence of ice concentration, ice roughness, and surface layer stratification

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5571-5586, doi:10.1029/2018JC014096.The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice cover is investigated using observations from Ice‐Tethered Profilers with Velocity and Seaglider sampling during the 2014 Marginal Ice Zone experiment in the Canada Basin. Ice roughness, ice concentration, and wind forcing all influenced the daily to seasonal changes in the internal wavefield. Three different ice concentration thresholds appeared to determine the evolution of internal wave spectral energy levels: (1) the initial decrease from 100% ice concentration after which dissipation during the surface reflection was inferred to increase, (2) the transition to 70–80% ice concentration when the local generation of internal waves increased, and (3) the transition to open water that was associated with larger‐amplitude internal waves. Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70–80%: smoother ice was associated with reduced local internal wave generation. Richardson numbers were rarely supercritical, consistent with weak vertical mixing under all ice concentrations. On decadal timescales, smoother ice may counteract the effects of lower ice concentration on the internal wavefield complicating future predictions of internal wave activity and vertical mixing.Seagliders Grant Number: N00014‐12‐10180; Deployment and subsequent analysis efforts of the ITP‐Vs Grant Numbers: N00014‐12‐10799, N00014‐12‐10140; Joint Ocean Ice Studies cruise; Beaufort Gyre Observing System2019-02-1

    Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype.

    Get PDF
    In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors

    Bright light therapy to promote sleep in mothers of low-birth-weight infants: a pilot study

    Get PDF
    Having a low-birth-weight (LBW) infant in a neonatal intensive care unit (NICU) can intensify a mother’s sleep disturbances due to both stress and the dim lighting in the ICU setting, which desynchronizes circadian rhythms. The purpose of this pilot study was to examine the effectiveness of a 3-week bright light therapy intervention on sleep and health outcomes of mothers with LBW infants in the NICU. Controlled stratified randomization was used to assign 30 mothers to a treatment or control group. Data were collected at pretreatment (second week postpartum) and after the 3-week intervention. Sleep data were assessed by wrist actigraph (total sleep time [TST], circadian activity rhythms [CARs]) and the General Sleep Disturbance scale. Other outcome variables were measured by the Lee’s Fatigue scale, Edinburgh Postpartum Depression scale, and the Medical Outcomes Short Form 36, version 2. Mothers averaged 26.6 (SD = 6.3) years of age, and the majority were Black (73%). The mean gestational age for the infants was 27.7 (SD = 2.0) weeks. Small to large effect sizes were found when comparing the pre- to posttreatment differences between groups. Although none of the differences were statistically significant in this small sample, for mothers in the treatment group nocturnal TST (d = .33), CAR (d = 1.06), morning fatigue (d = .22), depressive symptoms (d = .40), physical health–related quality of life (d = .33), and mental health–related quality of life (d = .60) all improved compared to the control group. Bright light therapy is feasible for mothers with infants in an NICU. Clinically significant improvements have been evidenced; a larger-scale trial of effectiveness is needed

    Characterization of algal community composition and structure from the nearshore environment, Lake Tahoe (United States)

    Get PDF
    Periphyton assemblages from the nearshore environment of the west (California) side of Lake Tahoe, were analyzed to determine their taxonomic composition and community structure across habitats and seasons. Lake Tahoe is the second deepest lake in the US and an iconic oligotrophic subalpine lake with remarkable transparency. It has experienced offshore cultural eutrophication since the 1960s with observations of nuisance nearshore algal growth since the mid 2000s attributed to anthropogenic stressors. Samplings from November 2019–September 2020 provide useful snapshots against which older monitoring may be contextualized. A voucher flora, complete with descriptions, photo-documentation and referencing to species concepts employed, was created as a method of providing reproducible identification and enumeration of algal species, and more seamless reconciliation of detailed taxonomic data with future monitoring projects. The eulittoral zone (0–2 m) is seasonally dominated by elongate araphid (Synedra, Ulnaria) and stalked or entubed diatoms (Gomphonema, Cymbella, Encyonema). The sublittoral zone (>2 m) is dominated by a nitrogen-fixing Epithemia-cyanobacteria assemblage with less seasonal changes in dominance and composition that expanded to impinge on the 2 m depths of the eulittoral zone in the Fall. Sublittoral epipsammic samples, despite their proximity to rocks, had a very distinct diatom composition and high species dominance, similar to what was seen in the Fall eulittoral samples, with high numbers of Staurosirella chains and small biraphid diatoms. The deeper samples at 30 and 50 m contained high numbers of live Epithemia, and indicate a thriving sublittoral assemblage at these greater depths, but with less biomass. The 2019–20 data show many of the same diatom taxa observed in the 1970’s and 1980’s but with changes in species dominance. Notably, there was less of the green alga Mougeotia, when compared to the 1970’s data, and a higher dominance by nitrogen fixing Epithemia in the sublittoral zone, persisting year-round. These new data show roughly double the algal species biodiversity that had been documented previously in the Lake Tahoe nearshore, and is largely attributed to the methods employed. Adopting these new methods in future monitoring efforts should improve harmonization of taxonomic data and help advance our knowledge of the contributions to nearshore cultural eutrophication.Fil: Noble, Paula J.. University Of Nevada; Estados UnidosFil: Seitz, Carina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Lee, Sylvia S.. No especifĂ­ca;Fil: Manoylov, Kalina M.. No especifĂ­ca;Fil: Chandra, Sudeep. University Of Nevada; Estados Unido

    Stacks and D-Brane Bundles

    Full text link
    In this paper we describe explicitly how the twisted ``bundles'' on a D-brane worldvolume in the presence of a nontrivial B field, can be understood in terms of sheaves on stacks. We also take this opportunity to provide the physics community with a readable introduction to stacks and generalized spaces.Comment: 24 pages, LaTeX; v2: references adde

    There are laterality effects in memory functioning in children/adolescents with focal epilepsy.

    Get PDF
    In a sample of individuals with childhood focal epilepsy, children/adolescents with left hemisphere foci outperformed those with right foci on both measures of nonverbal learning. Participants with left foci performed worse than controls on paired associate delayed recall and semantic memory, and they had greater laterality effects in IQ. Participants with right foci performed worse than controls on delayed facial recognition. Both groups displayed reduced focused attention and poor passage retention over time. Although participants with bilateral foci displayed poor learning and lower IQ than controls, they did not have worse impairment than those with a unilateral focus

    CERT1 mutations perturb human development by disrupting sphingolipid homeostasis

    Get PDF
    Cell Biology; Genetics; NeurodevelopmentBiologia cel·lular; GenĂštica; NeurodesenvolupamentBiologĂ­a celular; GenĂ©tica; NeurodesarrolloNeural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS), NIH (R01NS109858, to VAG); the Paul A. Marks Scholar Program at the Columbia University Vagelos College of Physicians and Surgeons (to VAG); a TIGER grant from the TAUB Institute at the Columbia Vagelos College of Physicians and Scientists (to VAG); the Swiss National Science Foundation (SNF 31003A-179371, to TH); the European Joint Program on Rare Diseases (EJP RD+SNF 32ER30-187505, to TH); the Swiss Cancer League (KFS-4999-02-2020, to GD); the EPFL institutional fund (to GD); the Kristian Gerhard Jebsen Foundation (to GD); the Swiss National Science Foundation (SNSF) (310030_184926, to GD); the Swiss Foundation for Research on Muscle Disease (FSRMM, to MAL); the Natural Science and Engineering Research Council of Canada (Discovery Grant 2020-04241, to JEB); the Italian Ministry of Health Young Investigator Grant (GR-2011-02347754, to EL); the Fondazione Istituto di Ricerca Pediatrica – CittĂ  della Speranza (18-04, to EL); the Wroclaw Medical University (SUB.E160.21.004, to RS); the National Science Centre, Poland (2017/27/B/NZ5/0222, to RS); Telethon Undiagnosed Diseases Program (TUDP) (GSP15001); the Temple Street Foundation/Children’s Health Foundation Ireland (RPAC 19-02, to IK); the Deutsche Forschungsgemeinschaft (DFG) (PO2366/2–1, to BP); the Instituto de Salud Carlos III, Spain (to ELM, EBS, and BMD); the National Natural Science Foundation of China (81871079 and 81730036, to HG and KX); and the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH (R01 DK115574, to SSC)
    • 

    corecore