2,691 research outputs found

    Spin polarization amplification within nonmagnetic semiconductors at room temperature

    Full text link
    We demonstrate theoretically that the spin polarization of current can be electrically amplified within nonmagnetic semiconductors by exploiting the fact the spin current, compared to the charge current, is weakly perturbed by electric driving forces. As a specific example, we consider a T-shaped current branching geometry made entirely of a nonmagnetic semiconductor, where the current is injected into one of the branches (input branch) and splits into the other two branches (output branches). We show that when the input current has a moderate spin polarization, the spin polarization in one of the output branches can be higher than the spin polarization in the input branch and may reach 100% when the relative magnitudes of current-driving electric fields in the two output branches are properly tuned. The proposed amplification scheme does not use ferromagnets or magnetic fields, and does not require low temperature operation, providing an efficient way to generate a highly spin polarized current in nonmagnetic semiconductors at room temperature.Comment: 11 pages, 2 figures, to appear in Phys. Rev.

    Influence of Rb/Cs cation-exchange on inorganic Sn halide perovskites: From chemical structure to physical properties

    Get PDF
    CsSnI3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin–orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells

    Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.Comment: 16 pages including 4 figure

    CP1CP^{1} model with Hopf term and fractional spin statistics

    Get PDF
    We reconsider the CP1CP^{1} model with the Hopf term by using the Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac quantization method. We also perform a semi-classical quantization of the topological charge Q sector by exploiting the collective coordinates to explicitly show the fractional spin statistics.Comment: 15 page

    Pressure dependence of upper critical fields in FeSe single crystals

    Full text link
    We investigate the pressure dependence of the upper critical fields ({\mu}0_0HHc2_{c2}) for FeSe single crystals with pressure up to 2.57 GPa. The superconducting (SC) properties show a disparate behavior across a critical pressure where the pressure-induced antiferromagnetic phase coexists with superconductivity. The magnetoresistance for H//abH//ab and H//cH//c is very different: for H//cH//c, magnetic field induces and enhances a hump in the resistivity close to the TcT_c for pressures higher than 1.2 GPa, while it is absent for H//abH//ab. Since the measured {\mu}0_0HHc2_{c2} for FeSe samples is smaller than the orbital limited upper critical field (HHorb^{orb}c2_{c2}) estimated by the Werthamer Helfand and Hohenberg (WHH) model, the Maki parameter ({\alpha}) related to Pauli spin-paramagnetic effects is additionally considered to describe the temperature dependence of {\mu}0_0HHc2_{c2}(TT). Interestingly, the {\alpha} value is hardly affected by pressure for H//abH//ab, while it strongly increases with pressure for H//cH//c. The pressure evolution of the {\mu}0_0HHc2_{c2}(0)s for the FeSe single crystals is found to be almost similar to that of TcT_c(PP), suggesting that the pressure-induced magnetic order adversely affects the upper critical fields as well as the SC transition temperature.Comment: 23 pages, 6 figures, 1 tabl

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid

    A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight

    Get PDF
    This paper reviews the flight mechanics and control of birds and bird-size aircraft. It is intended to fill a niche in the current survey literature which focuses primarily on the aerodynamics, flight dynamics and control of insect scale flight. We review the flight mechanics from first principles and summarize some recent results on the stability and control of birds and bird-scale aircraft. Birds spend a considerable portion of their flight in the gliding (i.e., non-flapping) phase. Therefore, we also review the stability and control of gliding flight, and particularly those aspects which are derived from the unique control features of birds

    Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks

    Get PDF
    Pyroligneous acid which is one of the commercial sources for acetic acid can be produced from high temperature carbonization of lignocellulosic biomass. Acetic acid can be used as a wood preservative to discourage the growth of fungal and molds. However, at higher temperature, organic compounds especially acetic acid in pyroligneous acid degraded except for some phenols. Therefore, effectiveness pyroligneous acid that pyrolysed at different temperature as fungicide and insecticide for used as wood preservative was evaluated. Pyroligneous acids were derived from rubberwood, oil palm trunk and mix hardwood heated at temperature of 300, 400 and 500°C, respectively in an airless container. The yield of pyroligneous acids was calculated and the chemical compounds of the pyroligneous acid were analysed using Fourier Transform InfraRed (FT-IR). For the efficacy of pyroligneous acid tests, rubberwood test blocks were immersed in the pyroligneous acid for 24 h at room temperature. The treated rubberwood test blocks were later tested against mold (Penicillium sp.), white rot fungus (Pycnoporous sanguineus) and subterranean termites, (Coptotermes curvignathus) according to ASTM standard method. The result shows that highest pyroligneous acid yield was found during pyrolysed of lignocellulosic biomass at temperature of 500°C. All the rubberwood test blocks treated with pyroligneous acids were effective against the mold, white rot fungi and termites. Nonetheless, the pyrolysis temperature did not affect the effectiveness of pyroligneous acids against biological agents. Conclusively, pyroligneous acids effective for discourage the growth of mold and white rot fungi as well accelerate the mortality of termites in laboratory condition

    Forest Decline Under Progress in the Urban Forest of Seoul, Central Korea

    Get PDF
    Vegetation in the urban area showed not only a difference in species composition but also lower diversity compared with that of the natural area. Successional trend was normal in natural area, but that in urban areas showed a retrogressive pattern. Korean mountain ash (Sorbus alnifolia (Siebold & Zucc.) K.Koch), a shade intolerant species, dominated such a retrogressive succession. The vegetation decline is due to changes of mesoclimate and soil properties that imbalanced distribution of green space induced as the result of urbanization. In recent years, new environmental stress due to climate change is imposed additively to this forest decline. Drought is the very environmental stress. Drought-induced plant damage started from withering of leaves of plants introduced for landscaping in the urban area. Over time, branches died and death of the whole plant body followed. In particular, damage of Korean mountain ash, the product of retrogressive succession, was remarkable. As retrogressive succession has already progressed much, thus such phenomenon could be recognized as crisis of urban forest
    corecore