2,927 research outputs found

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    Role of many-body entanglement in decoherence processes

    Get PDF
    A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment, and also an array of infinite beam splitters. It is shown that many-body entanglement of the system and the environment plays a crucial role in the process of disentangling the system.Comment: 4 pages, 1 figur

    Magnetic monopoles from gauge theory phase transitions

    Full text link
    Thermal fluctuations of the gauge field lead to monopole formation at the grand unified phase transition in the early Universe, even if the transition is merely a smooth crossover. The dependence of the produced monopole density on various parameters is qualitatively different from theories with global symmetries, and the monopoles have a positive correlation at short distances. The number density of monopoles may be suppressed if the grand unified symmetry is only restored for a short time by, for instance, nonthermal symmetry restoration after preheating.Comment: 5 pages, updated to match the version published in PRD (http://link.aps.org/abstract/PRD/v68/e021301) on 11 July 200

    Information-Geometric Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci Curvature

    Full text link
    A new information-geometric approach to chaotic dynamics on curved statistical manifolds based on Entropic Dynamics (ED) is proposed. It is shown that the hyperbolicity of a non-maximally symmetric 6N-dimensional statistical manifold M_{s} underlying an ED Gaussian model describing an arbitrary system of 3N degrees of freedom leads to linear information-geometric entropy growth and to exponential divergence of the Jacobi vector field intensity, quantum and classical features of chaos respectively.Comment: 8 pages, final version accepted for publicatio

    Two-Hole and Four-Hole Bound States in a t-J Ladder at half-filling

    Full text link
    The two-hole excitation spectrum of the t-J ladder at half-filling is studied using linked-cluster series expansion methods. A rich spectrum of bound states emerges, particularly at small t/Jt/J. Their dispersion relations and coherence lengths are computed, along with the threshold behaviour as the bound states merge into the continuum. A class of 4-hole bound states is also studied, leading to the conclusion that phase separation occurs for t/J≲0.5t/J \lesssim 0.5, in agreement with other studies.Comment: revtex

    Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)

    Full text link
    We use Raman scattering to study spin, charge, and lattice dynamics in various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the electron-phonon interaction strength, (2) an increased temperature-dependence of the two-magnon energy and linewidth in the antiferromagnetic insulating phase, and (3) evidence for charge gap development, and hysteresis associated with the structural phase change, both of which are indicative of a first-order metal-insulator transition (T_{MI}) and a coexistence of metallic and insulating components for T < T_{MI}

    Relativistic Quantum Mechanics - Particle Production and Cluster Properties

    Get PDF
    This paper constructs relativistic quantum mechanical models of particles satisfying cluster properties and the spectral condition which do not conserve particle number. The treatment of particle production is limited to systems with a bounded number of bare-particle degrees of freedom. The focus of this paper is about the realization of cluster properties in these theories.Comment: 36 pages, Late

    Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions

    Full text link
    We revisit the vertical structure of neutrino dominated accretion flows (NDAFs) in spherical coordinates with a new boundary condition based on the mechanical equilibrium. The solutions show that NDAF is significantly thick. The Bernoulli parameter and neutrino trapping are determined by the mass accretion rate and the viscosity parameter. According to the distribution of the Bernoulli parameter, the possible outflow may appear in the outer region of the disk. The neutrino trapping can essentially affect the neutrino radiation luminosity. The vertical structure of NDAF is like a "sandwich", and the multilayer accretion may account for the flares in gamma-ray bursts.Comment: 7 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure

    The interplay between shell effects and electron correlations in quantum dots

    Get PDF
    We use the Path Integral Monte Carlo method to investigate the interplay between shell effects and electron correlations in single quantum dots with up to 12 electrons. By use of an energy estimator based on the hypervirial theorem of Hirschfelder we study the energy contributions of different interaction terms in detail. We discuss under which conditions the total spin of the electrons is given by Hund's rule, and the temperature dependence of the crystallization effects.Comment: 6 pages, 4 figure
    • …
    corecore