208 research outputs found

    Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study

    Get PDF
    Objective: Serum α-fetoprotein (AFP) is the most commonly used biomarker for screening hepatocellular carcinoma (HCC) but fails to detect about half of the patients. Thus, we investigated if circulating microRNAs (miRNAs) could outperform AFP for HCC detection. Design: A retrospective cohort study. Setting: Two clinical centres in China. Participants: The exploration phase included 96 patients with HCC who received primary curative hepatectomy, and the validation phase included 29 hepatitis B carriers, 57 patients with HCC and 30 healthy controls. Main outcome measures: Expression of miRNAs was measured by real-time quantitative reverse transcription-PCR. Areas under receiver operating characteristic curves were used to determine the feasibility of using serum miRNA concentration as a diagnostic marker for defining HCC. A multivariate logistic regression analysis was used to evaluate performances of combined serum miRNAs. Results: In the exploration phase, miRNA profiling on resected tumour/adjacent non-tumour tissues identified miR-15b, miR-21, miR-130b and miR-183 highly expressed in tumours. These miRNAs were also detectable in culture supernatants of HCC cell lines and in serum samples of patients. Remarkably, these serum miRNAs were markedly reduced after surgery, indicating the tumour-derived source of these circulating miRNAs. In a cross-centre validation study, combined miR-15b and miR-130b demonstrated as a classifier for HCC detection, yielding a receiver operating characteristic curve area of 0.98 (98.2% sensitivity and 91.5% specificity). The detection sensitivity of the classifier in a subgroup of HCCs with low AFP (<20 ng/ml) was 96.7%. The classifier also identified early-stage HCC cases that could not be detected by AFP. Conclusion: The combined miR-15b and miR-130b classifier is a serum biomarker with clinical value for HCC screening.published_or_final_versio

    High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser

    Get PDF
    Kong C, Pilger C, Hachmeister H, et al. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light: Science &amp; Applications. 2020;9(1): 25.Coherent Raman scattering (CRS) microscopy is widely recognized as a powerful tool for tackling biomedical problems based on its chemically specific label-free contrast, high spatial and spectral resolution, and high sensitivity. However, the clinical translation of CRS imaging technologies has long been hindered by traditional solid-state lasers with environmentally sensitive operations and large footprints. Ultrafast fibre lasers can potentially overcome these shortcomings but have not yet been fully exploited for CRS imaging, as previous implementations have suffered from high intensity noise, a narrow tuning range and low power, resulting in low image qualities and slow imaging speeds. Here, we present a novel high-power self-synchronized two-colour pulsed fibre laser that achieves excellent performance in terms of intensity stability (improved by 50 dB), timing jitter (24.3 fs), average power fluctuation (20 dB) and pulse width variation (<1.8%) over an extended wavenumber range (2700–3550 cm−1). The versatility of the laser source enables, for the first time, high-contrast, fast CRS imaging without complicated noise reduction via balanced detection schemes. These capabilities are demonstrated in this work by imaging a wide range of species such as living human cells and mouse arterial tissues and performing multimodal nonlinear imaging of mouse tail, kidney and brain tissue sections by utilizing second-harmonic generation and two-photon excited fluorescence, which provides multiple optical contrast mechanisms simultaneously and maximizes the gathered information content for biological visualization and medical diagnosis. This work also establishes a general scenario for remodelling existing lasers into synchronized two-colour lasers and thus promotes a wider popularization and application of CRS imaging technologies

    Cytoplasmic Forkhead Box M1 (FoxM1) in Esophageal Squamous Cell Carcinoma Significantly Correlates with Pathological Disease Stage

    Get PDF
    Abstract: Esophageal cancer is a deadly cancer with esophageal squamous cell carcinoma (ESCC) as the major type. Until now there has been a lack of reliable prognostic markers for this malignancy. This study aims to investigate the clinical correlation between Forkhead box M1 (FoxM1) and patients' parameters in ESCC. Methods: Immunohistochemistry was performed to investigate the expression and localization of FoxM1 in 64 ESCC tissues and 10 nontumor esophageal tissues randomly selected from 64 patients before these data were used for clinical correlations. Results: Cytoplasmic and nuclear expressions of FoxM1 were found in 63 and 16 of the 64 ESCC tissues, respectively. Low cytoplasmic expression of FoxM1 was correlated with early pathological stage in ESCC (P = 0.018), while patients with nuclear FoxM1 were younger in age than those without nuclear expression (P < 0.001). Upregulation of FoxM1 mRNA was found in five ESCC cell lines (HKESC-1, HKESC-2, HKESC-3, HKESC-4, and SLMT-1) when compared to non-neoplastic esophageal squamous cell line NE-1 using quantitative polymerase chain reaction (qPCR). Except for HKESC-3, all studied ESCC cell lines demonstrated a high expression of FoxM1 protein using immunoblot. A high mRNA level of FoxM1 was observed in all of the ESCC tissues examined when compared to their adjacent nontumor tissues using qPCR. Conclusion: Cytoplasmic FoxM1 was correlated with pathological stage and might be a biomarker for advanced ESCC. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Gene Signatures Derived from a c-MET-Driven Liver Cancer Mouse Model Predict Survival of Patients with Hepatocellular Carcinoma

    Get PDF
    Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated

    Original Article SOD2 rs4880 CT/CC genotype predicts poor survival for Chinese gastric cancer patients received platinum and fluorouracil based adjuvant chemotherapy

    Get PDF
    Abstract: Adjuvant chemotherapy is a standard therapy for gastric cancer patients, however, treatment response is quite heterogeneous. Molecular biomarkers will be highly valuable to guide the therapy and predict the response and prognosis in these patients. The antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione S-transferase pi 1 (GSTP1) are involved in oxidative stress and drug detoxification, which modulate the efficacy of anticancer drugs. Here, we investigated the clinical associations of two functional single nucleotide polymorphisms of SOD2 and GSTP1 in stage II-III postoperative gastric cancer patients. SOD2 rs4880 and GSTP1 rs1695 were genotyped in 207 patients received postoperative platinum and fluorouracil based chemotherapy and 304 patients who did not. SOD2 rs4880 CT/CC significantly associated with decreased median overall survival time of 23 months when compared to the TT genotype (mean overall survival time of 65.2 months, P=0.002) only for patients received adjuvant chemotherapy. Stratification analysis showed SOD2 rs4880 C

    VERTICO VII: Environmental quenching caused by suppression of molecular gas content and star formation efficiency in Virgo Cluster galaxies

    Full text link
    We study how environment regulates the star formation cycle of 33 Virgo Cluster satellite galaxies on 720 parsec scales. We present the first resolved star-forming main sequence for cluster galaxies, dividing the sample based on their global HI properties and comparing to a control sample of field galaxies. HI-poor cluster galaxies have reduced star formation rate (SFR) surface densities with respect to both HI-normal cluster and field galaxies (0.5 dex), suggesting that mechanisms regulating the global HI content are responsible for quenching local star formation. We demonstrate that the observed quenching in HI-poor galaxies is caused by environmental processes such as ram pressure stripping (RPS) simultaneously reducing molecular gas surface density and star formation efficiency (SFE), compared to regions in HI-normal systems (by 0.38 and 0.22 dex, respectively). We observe systematically elevated SFRs that are driven by increased molecular gas surface densities at fixed stellar mass surface density in the outskirts of early-stage RPS galaxies, while SFE remains unchanged with respect to the field sample. We quantify how RPS and starvation affect the star formation cycle of inner and outer galaxy discs as they are processed by the cluster. We show both are effective quenching mechanisms with the key difference being that RPS acts upon the galaxy outskirts while starvation regulates the star formation cycle throughout disc, including within the truncation radius. For both processes, the quenching is caused by a simultaneous reduction in molecular gas surface densities and SFE at fixed stellar mass surface density.Comment: 17 pages, 1 table, 5 figures, accepted for publication in Ap

    Clinicopathologic and gene expression parameters predict liver cancer prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model.</p> <p>Methods</p> <p>Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction.</p> <p>Results</p> <p>HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis.</p> <p>Conclusion</p> <p>When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome.</p

    Recombination-mediated remodelling of host-pathogen interactions during Staphylococcus aureus niche adaptation

    Get PDF
    Large-scale recombination events have led to the emergence of epidemic clones of several major bacterial pathogens. However, the functional impact of the recombination on clonal success is not understood. Here, we identified a novel widespread hybrid clone (ST71) of livestock-associated Staphylococcus aureus that evolved from an ancestor belonging to the major bovine lineage CC97, through multiple large-scale recombination events with other S. aureus lineages occupying the same ruminant niche. The recombination events, affecting a 329 kb region of the chromosome spanning the origin of replication, resulted in allele replacement and loss or gain of an array of genes influencing host–pathogen interactions. Of note, molecular functional analyses revealed that the ST71 hybrid clone has acquired multiple novel pathogenic traits associated with acquired and innate immune evasion and bovine extracellular matrix adherence. These findings provide a paradigm for the impact of large-scale recombination events on the rapid evolution of bacterial pathogens within defined ecological niches

    Symptoms of Anxiety and Cardiac Hospitalizations at 12 Months in Patients with Heart Failure

    Get PDF
    OBJECTIVE: Heart failure (HF) is a leading cause of hospitalization. Clinical and socio-demographic factors have been associated with cardiac admissions, but little is known about the role of anxiety. We examined whether symptoms of anxiety were associated with cardiac hospitalizations at 12 months in HF patients. METHODS: HF outpatients (N=237) completed the Hospital Anxiety and Depression Scale (HADS) at baseline (i.e., inclusion into the study). A cutoff ≥8 was used to indicate probable clinical levels of anxiety and depression. At 12 months, a medical chart abstraction was performed to obtain information on cardiac hospitalizations. RESULTS: The prevalence of symptoms of anxiety was 24.9 % (59/237), and 27.0 % (64/237) of patients were admitted for cardiac reasons at least once during the 12-month follow-up period. Symptoms of anxiety were neither significantly associated with cardiac hospitalizations in univariable logistic analysis [OR=1.13, 95% CI (0.59–2.17), p=0.72] nor in multivariable analysi
    corecore