694 research outputs found

    The genetics of colored sequence synesthesia: Evidence of linkage to chromosome 16q and genetic heterogeneity for the condition

    Get PDF
    Synesthesia is a perceptual condition in which normal sensory stimulation can trigger anomalous sensory experiences. For example, synesthetes may experience colors in response to sounds, tastes in response to words, or smells in response to touch. We here focus on colored sequence synesthesia, in which color experiences are triggered by learned ordinal sequences such as letters, numbers, weekdays and months. Although synesthesia has been noted in the scientific literature for over a century, it is understood only at the level of the phenomenology, and not at the molecular and neural levels. We have performed a linkage analysis to identify the first genetic loci responsible for the increased neural crosstalk underlying colored sequence synesthesia. Our analysis has identified a 23 MB region on chromosome 16 as a putative locus for the trait. Our data provide the first step in understanding neural crosstalk from its molecular basis to its behavioral consequences, opening a new inroad into the understanding of the multisensory brain

    Antibody–Drug Conjugate that Exhibits Synergistic Cytotoxicity with an Endosome–Disruptive Peptide

    Get PDF
    Antibody–drug conjugates are an important class of cancer therapeutics. These agents generally bind a specific cell surface receptor, undergo receptor-mediated endocytosis, and enter the endosomal–lysosomal system, where the environment in these organelles facilitates the release of a membrane-permeable cytotoxin. By using a membrane-impermeable cytotoxin, we describe here a method that allows the cytotoxicity of an antibody conjugate to be triggered by co-administration with an endosome-disruptive peptide that exhibits low toxicity. This approach was validated by conjugation of an anionic derivative of the tubulin-binding cytotoxin colchinol methyl ether to lysine residues of the HER2-targeting antibody trastuzumab (Herceptin) via a disulfide. When this antibody binds HER2 on SKBR3 breast cancer cells and undergoes endocytosis, the membrane-impermeable cytotoxin is released, but it becomes trapped in endosomes, resulting in relatively low cytotoxicity (IC50 > 1 μM). However, co-administration with an essentially nontoxic (IC50 > 10 μM) cholesterol-linked endosome-disruptive peptide promotes the release of this small molecule into the cytoplasm, conferring subnanomolar cytotoxic potency (IC50 = 0.11 ± 0.07 nM). Studies of a structurally related fluorophore conjugate revealed that the endosome-disruptive peptide does not substantially enhance cleavage of the disulfide (t1/2 = 8 ± 2 h) within endosomes, suggesting that the mechanism of endosomal escape involves the efflux of some small molecules without facilitating substantial influx of reduced glutathione

    Development of the Infant Gut Microbiome Predicts Temperament Across the First Year of Life

    Get PDF
    Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months of age. In 67 infants, we examined if gut microbiome composition assessed at 1–3 weeks, 2, 6, and 12 months of age was associated with temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1–3 weeks was associated with surgency/extraversion at age 12 months. Bifidobacterium and Lachnospiraceae abundance at 1–3 weeks of age was positively associated with surgency/extraversion at age 12 months. Klebsiella abundance at 1–3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on neurodevelopment

    STAT3 inhibitor mitigates cerebral amyloid angiopathy and parenchymal amyloid plaques while improving cognitive functions and brain networks

    Get PDF
    Previous reports indicate a potential role for signal transducer and activator of transcription 3 (STAT3) in amyloid-β (Aβ) processing and neuritic plaque pathogenesis. In the present study, the impact of STAT3 inhibition on cognition, cerebrovascular function, amyloid pathology, oxidative stress, and neuroinflammation was studied using in vitro and in vivo models of Alzheimer\u27s disease (AD)-related pathology. For in vitro experiments, human brain vascular smooth muscle cells (HBVSMC) and human brain microvascular endothelial cells (HBMEC) were used, and these cultured cells were exposed to Aβ peptides followed by measurement of activated forms of STAT3 expression and reactive oxygen species (ROS) generation. Further, 6 months old 5XFAD/APOE4 (5XE4) mice and age-matched negative littermates were used for in vivo experiments. These mice were treated with STAT3 specific inhibitor, LLL-12 for 2 months followed by neurobehavioral and histopathological assessment. In vitro experiments showed exposure of cerebrovascular cells to Aβ peptides upregulated activated forms of STAT3 and produced STAT3-mediated vascular oxidative stress. 5XE4 mice treated with the STAT3-specific inhibitor (LLL-12) improved cognitive functions and functional connectivity and augmented cerebral blood flow. These functional improvements were associated with a reduction in neuritic plaques, cerebral amyloid angiopathy (CAA), oxidative stress, and neuroinflammation. Reduction in amyloid precursor protein (APP) processing and attenuation of oxidative modification of lipoprotein receptor related protein-1 (LRP-1) were identified as potential underlying mechanisms. These results demonstrate the broad impact of STAT3 on cognitive functions, parenchymal and vascular amyloid pathology and highlight the therapeutic potential of STAT3 specific inhibition for treatment of AD and CAA

    HLA diversity in ethnic populations can affect detection of donor-specific antibodies by single antigen beads

    Get PDF
    IntroductionIn solid-organ transplantation, human leukocyte antigen (HLA) donor-specific antibodies (DSA) are strongly associated with graft rejection, graft loss, and patient death. The predominant tests used for detecting HLA DSA before and after solid-organ transplantation are HLA single antigen bead (SAB) assays. However, SAB assays may not detect antibodies directed against HLA epitopes that are not represented in the SAB. The prevalence and potential impact of unrepresented HLA epitopes are expected to vary by ethnicity, but have not been thoroughly investigated. To address this knowledge gap, HLA allele frequencies from seven ethnic populations were compared with HLA proteins present in SAB products from two manufacturers to determine unrepresented HLA proteins.MaterialsAllele frequencies were obtained from the Common, Intermediate, and Well Documented HLA catalog v3.0, and frequencies of unrepresented HLA types were calculated. Next-generation sequencing was used to determine HLA types of 60 deceased solid-organ donors, and results were used to determine if their HLA-A, -B, -C, and -DRB1 proteins were not present in SAB reagents from two vendors. Unrepresented HLA proteins were compared with the most similar protein in SAB assays from either vendor and then visualized using modeling software to assess potential HLA epitopes.ResultsFor the seven ethnic populations, 0.5% to 11.8% of each population had HLA proteins not included in SAB assays from one vendor. Non-European populations had greater numbers of unrepresented alleles. Among the deceased donors, 26.7% (16/60) had at least one unrepresented HLA-A, -B, -C, or -DRB1 protein. Structural modeling demonstrated that a subset of these had potential HLA epitopes that are solvent accessible amino acid mismatches and are likely to be accessible to B cell receptors.DiscussionIn conclusion, SAB assays cannot completely rule out the presence of HLA DSA. HLA epitopes not represented in those assays vary by ethnicity and should not be overlooked, especially in non-European populations. Allele-level HLA typing can help determine the potential for HLA antibodies that could evade detection

    Updated Parameters and a New Transmission Spectrum of HD 97658b

    Get PDF
    Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1–1.7 μm reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O ≳ 0.8) and metallicities of ≳100× solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P = 9.489295 ± 0.000005, with a best-fit transit time center at T₀ = 2456361.80690 ± 0.00038 (BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34 ± 2 days) and stellar activity cycle (9.6 yr) of the host star HD 97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000 K and with sizes between 1 R⊕ and 4 R⊕. We find that at least a third of small planets cooler than 1000 K can be well characterized using James Webb Space Telescope, and of those, HD 97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization

    LIN28A expression reduces sickling of cultured human erythrocytes

    Get PDF
    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes

    Small Molecule Inhibitors of the BfrB-Bfd Interaction Decrease Pseudomonas aeruginosa Fitness and Potentiate Fluoroquinolone Activity

    Get PDF
    © 2019 American Chemical Society. All rights reserved. The iron storage protein bacterioferritin (BfrB) is central to bacterial iron homeostasis. The mobilization of iron from BfrB, which requires binding by a cognate ferredoxin (Bfd), is essential to the regulation of cytosolic iron levels in P. aeruginosa. This paper describes the structure-guided development of small molecule inhibitors of the BfrB-Bfd protein-protein interaction. The process was initiated by screening a fragment library and followed by obtaining the structure of a fragment hit bound to BfrB. The structural insights were used to develop a series of 4-(benzylamino)- A nd 4-((3-phenylpropyl)amino)-isoindoline-1,3-dione analogs that selectively bind BfrB at the Bfd binding site. Challenging P. aeruginosa cells with the 4-substituted isoindoline analogs revealed a dose-dependent growth phenotype. Further investigation determined that the analogs elicit a pyoverdin hyperproduction phenotype that is consistent with blockade of the BfrB-Bfd interaction and ensuing irreversible accumulation of iron in BfrB, with concomitant depletion of iron in the cytosol. The irreversible accumulation of iron in BfrB prompted by the 4-substituted isoindoline analogs was confirmed by visualization of BfrB-iron in P. aeruginosa cell lysates separated on native PAGE gels and stained for iron with Ferene S. Challenging P. aeruginosa cultures with a combination of commercial fluoroquinolone and our isoindoline analogs results in significantly lower cell survival relative to treatment with either antibiotic or analog alone. Collectively, these findings furnish proof of concept for the usefulness of small molecule probes designed to dysregulate bacterial iron homeostasis by targeting a protein-protein interaction pivotal for iron storage in the bacterial cell

    An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering

    Get PDF
    The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering
    corecore