286,128 research outputs found

    A continuum model for entangled fibres

    Get PDF
    Motivated by the study of fibre dynamics in the carding machine, a continuum model for the motion of a medium composed of fibres is derived under the assumption that the dominant forces are due to fibre-fibre interactions and that the material is in tension. To characterise the material we include the averaged values of density and velocity and introduce variables to describe the mean direction, alignment and entanglement. We assume that the bulk stress of the material depends on the density, entanglement, degree of alignment, average direction and shear-rates. A kinematic equation for the average direction and two proposed heuristic laws for the evolution of entanglement and degree of alignment are given to close the system. Extensional and shearing simulations are in good qualitative agreement with experimental results

    Cellular distribution of the prion protein in palatine tonsils of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni)

    Get PDF
    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the Cervidae family, including deer (Odocoileus spp.), elk (Cervus Canadensis spp.), and moose (Alces alces spp.). While CWD is a neurodegenerative disease, lymphoid accumulation of the abnormal isoform of the prion protein (PrPSc) is detectable early in the course of infection. It has been shown that a large portion of the PrPSc lymphoid accumulation in infected mule deer takes place on the surface of follicular dendritic cells (FDCs). In mice, FDC expression of PrPC has been shown to be essential for PrPSc accumulation. FDCs have been shown to normally express high levels of PrPC in mice and humans but this has not been examined in natural hosts for CWD. We used double immunofluorescent labeling and confocal microscopy to determine the PrPC expression characteristics of B and T lymphocytes as well as FDCs in palatine tonsils of CWD-negative mule deer and elk. We detected substantial PrPC colocalization with all cellular phenotypic markers used in this study, not just with FDC phenotypic markers

    Voyager cartography

    Get PDF
    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps are especially formatted color mosaics, controlled photomosaics, and airbrush maps. At 1:5,000,000 scale, mapping of Io, Europa, and Ganymede is complete. At 1:15,000,000 scale, mapping of Io and Europa is complete, and mapping of Ganymede is approximately complete. A controlled mosaic of Rhea has been compiled as a Digital Image Model (DIM) in the same format as is being used for Mars. The mosaic is being formatted for publication as a two-sheet set (Lambert Azimuthal Equal Area, Mercator, and Polar Stereographic projections). Magnetic tape copies of the DIM have been distributed to regional Planetary Image Facilities and other interested users. The DIM has a scale of 1/16 degree/pixel, corresponding to approximately 833 m/pixel on Rhea. Details of the status of the various map series are reported quarterly to Planetary Geology Principal Investigators

    On Flux Rope Stability and Atmospheric Stratification in Models of Coronal Mass Ejections Triggered by Flux Emergence

    Full text link
    Flux emergence is widely recognized to play an important role in the initiation of coronal mass ejections. The Chen-Shibata (2000) model, which addresses the connection between emerging flux and flux rope eruptions, can be implemented numerically to study how emerging flux through the photosphere can impact the eruption of a pre-existing coronal flux rope. The model's sensitivity to the initial conditions and reconnection micro-physics is investigated with a parameter study. In particular, we aim to understand the stability of the coronal flux rope in the context of X-point collapse and the effects of boundary driving in both unstratified and stratified atmospheres. In the absence of driving, we assess the behavior of waves in the vicinity of the X-point. With boundary driving applied, we study the effects of reconnection micro-physics and atmospheric stratification on the eruption. We find that the Chen-Shibata equilibrium can be unstable to an X-point collapse even in the absence of driving due to wave accumulation at the X-point. However, the equilibrium can be stabilized by reducing the compressibility of the plasma, which allows small-amplitude waves to pass through the X-point without accumulation. Simulations with the photospheric boundary driving evaluate the impact of reconnection micro-physics and atmospheric stratification on the resulting dynamics: we show the evolution of the system to be determined primarily by the structure of the global magnetic fields with little sensitivity to the micro-physics of magnetic reconnection; and in a stratified atmosphere, we identify a novel mechanism for producing quasi-periodic behavior at the reconnection site behind a rising flux rope as a possible explanation of similar phenomena observed in solar and stellar flares.Comment: Submitted Feb 28, 2014 to, accepted Aug 14, 2014 by Astronomy & Astrophysics. 13 pages, 10 figures, 2 table
    corecore