658 research outputs found

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    Postchallenge responses of nitrotyrosine and TNF-alpha during 75-g oral glucose tolerance test are associated with the presence of coronary artery diseases in patients with prediabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis has demonstrated an exponential relationship between 2-hr postchallenge hyperglycemia and coronary artery disease (CAD). Pulsatile hyperglycemia can acutely increase proinflammatory cytokines by oxidative stress. We hypothesized that postchallenge proinflammatory and nitrosative responses after 75 g oral glucose tolerance tests (75 g-OGTT) might be associated with CAD in patients without previously recognized type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Serial changes of plasma glucose (PG), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nitrotyrosine levels were analyzed during 75 g-OGTT in 120 patients (81 male; age 62 ± 11 years) before coronary angiography. Patients were classified as normal (NGT; 42%), impaired (IGT; 34%) and diabetic (T2DM; 24%) glucose tolerance by 75 g-OGTT.</p> <p>Results</p> <p>Postchallenge hyperglycemia elicited TNF-α, IL-6 and nitrotyrosine levels time-dependently, and 2-hr median levels of TNF-α (7.1 versus 6.4 pg/ml; <it>P </it>< 0.05) and nitrotyrosine (1.01 versus 0.83 <it>μ</it>mol/l; <it>P </it>< 0.05), but not IL-6 or PG, were significantly higher in patients with CAD in either IGT or T2DM groups. After adjusting risk factors and glucose tolerance status, 2-hr nitrotyrosine in highest quartiles (OR: 3.1, <it>P </it>< 0.05) remained an independent predictor of CAD by logistic regression analysis.</p> <p>Conclusions</p> <p>These results highlight postchallenge proinflammatory and nitrosative responses by 75 g-OGTT, rather than hyperglycemia <it>per se</it>, are associated with CAD in patients without previous recognized diabetes.</p

    The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure

    Get PDF
    AbstractWe have employed NMR to investigate the structure of SARS coronavirus nucleocapsid protein dimer. We found that the secondary structure of the dimerization domain consists of five α helices and a β-hairpin. The dimer interface consists of a continuous four-stranded β-sheet superposed by two long α helices, reminiscent of that found in the nucleocapsid protein of porcine respiratory and reproductive syndrome virus. Extensive hydrogen bond formation between the two hairpins and hydrophobic interactions between the β-sheet and the α helices render the interface highly stable. Sequence alignment suggests that other coronavirus may share the same structural topology

    Triggered Star Formation on the Border of the Orion-Eridanus Superbubble

    Full text link
    A census of classical T Tauri stars and Herbig Ae/Be stars has been performed around the Orion-Eridanus Superbubble which is ionized and created by the Ori OB1 association. This sample is used to study the spatial distribution of newborn stars, hence the recent star formation sequence, in the region that includes two giant molecular clouds (Orion A and B) and additional smaller clouds (NGC 2149, GN 05.51.4, VdB 64, the Crossbones, the Northern Filament, LDN 1551, LDN 1558, and LDN 1563). Most of the molecular clouds are located on the border of the Superbubble, and associated with H-alpha filaments and star formation activity, except the Northern Filament which is probably located outside the Superbubble. This suggests that while star formation progresses from the oldest Ori OB1a subgroup to 1b, 1c and 1d, the Superbubble compresses and initiates starbirth in clouds such as NGC 2149, GN 05.51.4, VdB 64, and the Crossbones, which are located more than one hundred pc away from the center of the Superbubble, and even in clouds some two hundred pc away, i.e., in LDN 1551, LDN 1558, and LDN 1563. A superbubble appears to have potentially a long-range influence in triggering next-generation star formation in an OB association.Comment: Accepted for publication in Ap

    Efficacy of Tandem High-Dose Chemotherapy and Autologous Stem Cell Rescue in Patients Over 1 Year of Age with Stage 4 Neuroblastoma: The Korean Society of Pediatric Hematology-Oncology Experience Over 6 Years (2000-2005)

    Get PDF
    The efficacy of tandem high-dose chemotherapy and autologous stem cell rescue (HDCT/ASCR) was investigated in patients with high-risk neuroblastoma. Patients over 1 yr of age who were newly diagnosed with stage 4 neuroblastoma from January 2000 to December 2005 were enrolled in The Korean Society of Pediatric Hematology-Oncology registry. All patients who were assigned to receive HDCT/ASCR at diagnosis were retrospectively analyzed to investigate the efficacy of single or tandem HDCT/ASCR. Seventy and 71 patients were assigned to receive single or tandem HDCT/ASCR at diagnosis. Fifty-seven and 59 patients in the single or tandem HDCT group underwent single or tandem HDCT/ASCR as scheduled. Twenty-four and 38 patients in the single or tandem HDCT group remained event free with a median follow-up of 56 (24-88) months. When the survival rate was analyzed according to intent-to-treat at diagnosis, the probability of the 5-yr event-free survival±95% confidence intervals was higher in the tandem HDCT group than in the single HDCT group (51.2±12.4% vs. 31.3±11.5%, P=0.030). The results of the present study demonstrate that the tandem HDCT/ASCR strategy is significantly better than the single HDCT/ASCR strategy for improved survival in the treatment of high-risk neuroblastoma patients

    Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize

    Get PDF
    Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective
    corecore